

Simulation studies for BLM thresholds at tertiary LHC collimators

M. D'Andrea, A. Mereghetti, A. Lechner, C. Bahamonde Castro, F. Cerutti

Introduction (I)

- Review of BLM thresholds at collimators
 - First discussions date back to 2015: https://indico.cern.ch/event/377818/
 - In particular, review of FLUKA factors (Gy/p) for different materials and dependence with beam energy
- Decided to start from TCTs
 - Least robust material (tungsten)
 - Being only two in a row, cross-talk is minmised
 - BLM families are among those most frequently changed

Introduction (II)

- Review of BLM thresholds based on numerical simulations
- Simulated scenario: direct impact on single jaw moving towards beam (or beam drifting towards jaw)
- TCTPV.4L2.B1 chosen: β function on non-cleaning plane is minimized (concentrated losses)

TCTPV.4L2.B1

- Three scenarios considered: fixed jaws aligned with closed orbit, lower/upper jaw moving and aligned with machine axis
- Lower jaw moving is the most conservative case (highest peak energy deposition, lowest BLM response)
- Two simulation steps: cleaning (impacts on collimator) and energy deposition (+ BLM signal)
- Extensive benchmark (qualitative and quantitative) carried out to gain confidence on simulation results

Simulation workflow

Energy sweep results (I)

Energy deposition comparison (lower jaw moving) - Super fine mesh

- Very **fine mesh**: $5 \mu \text{m} \times 5 \mu \text{m} \times 1 \text{ cm}$
- Required to best resolve the very fine impact distribution

UPPER JAW

Energy sweep results (II)

- Linear dependence on beam energy
- Middle row (beam height) has higher response
- Position 2 (1.74 m downstream of collimator, close to beam pipe) with vertical orientation has highest response

FLUKA BLM mesh

- Standardise simulation to describe wider set of configurations
- Sensitivity analysis: dependence of BLM response on relative positions, orientation...

BLM label		Distance from collimator			
TCTPV	TCTPH	s [m]	x [m]	y [m]	
BLMA	BLMM	0.91	0.25	0.35	
$_{\rm BLMB}$	BLMN	0.91	0.51	0.35	
$_{\mathrm{BLMC}}$	BLMO	1.74	0.25	0.35	
$_{\mathrm{BLMD}}$	$_{\rm BLMP}$	1.74	0.51	0.35	
BLME	BLMQ	0.91	0.25	0.00	
$_{\rm BLMF}$	BLMR	0.91	0.51	0.00	
BLMG	BLMS	1.74	0.25	0.00	
BLMH	BLMT	1.74	0.51	0.00	
$_{\mathrm{BLMI}}$	BLMU	0.91	0.25	-0.35	
$_{\mathrm{BLMJ}}$	$_{\mathrm{BLMV}}$	0.91	0.51	-0.35	
BLMK	$_{ m BLMW}$	1.74	0.25	-0.35	
BLML	BLMX	1.74	0.51	-0.35	

Calibration factor [pGy/p]

BLML H

Qualitative benchmark

- Benchmark against measurements during qualification loss maps (24th May 2017): combined ramp+squeeze
- Primary bottleneck: TCPs (collimation system regularly in place)
- Qualitative benchmark of BLM response behaviour with beam energy

M.D'Andrea

BLM thresholds review (I)

- Threshold presently deployed are reviewed with simulation results
- Number/rate of impacting protons allowed by present thresholds is calculated

$$N_p = \frac{D_{\text{BLM}}^{Th} \cdot \Delta T_{\text{RS}}}{\text{CF}}$$

$$D_{\text{BLM}}^{Th}$$

$$R_p = \frac{D_{\text{BLM}}^{Th}}{\text{CF}}$$

- For each family, the highest number/rate of proton is considered
- For each beam energy the highest value among all families is considered
- Temperature variation (short RSs) and power deposition (long RSs) is calculated

BLM thresholds review (II)

Short RSs

Not worrying

Long RSs

May be worrying

This scenario may bring the jaw close to plastic deformation regime (i.e. permanent deformation of the jaw)

Quantitative benchmark

- Quantitative benchmark carried out against measurements with TCT as primary bottleneck
- TCTPH.4L5.B1 at 6.5 TeV (10th June 2016) and TCTPH.4R5.B2 at 450 GeV (29th November 2016), to be compared with dedicated simulation setups

- Controlled losses produced via **beam blow up** (same as LMs)
- BLM readout from **RS12** used (more stable)
- CF chosen as single point or mean (depending on duration and stability)

$$CF = \frac{S_{\text{BLM}}}{\Delta S_{\text{BCT}}} \cdot \Delta T_{\text{RS}}$$

M.D'Andrea

Benchmark at 6.5 TeV

LHC Collimation Project CERN

Calibration factor

BLMQ (middle row, position 1)

Benchmark at 450 GeV (I)

18 Sep 2017

BLMU (bottom row, position 2)

Benchmark at 450 GeV (II)

BLMU (bottom row, position 2)

M.D'Andrea

Benchmark at 450 GeV (III)

Ratio Calibration factor / Peak energy deposition

Benchmark at 450 GeV (IV)

Ratio Calibration factor / Peak energy deposition

BLM thresholds proposal (I)

- Simulation and benchmark results are combined to make a first BLM thresholds proposal
- BLM thresholds proposal calculated from maximum number/rate of protons allowed by current thresholds and simulated CF for each beam energy
- Proposed thresholds will allow the same peak energy deposition, no matter the beam energy
- Homogenisation achieved assuming to move all TCT BLMs to the most favorable relative position

BLM label		Distance from collimator			
TCTPV	TCTPH	s [m]	x [m]	y [m]	
BLMG	BLMS	1.74	0.25	0.00	

Short RSs

$$\begin{split} N_{p,max}|_{E_b} &= \frac{E_{peak}|_{7\text{TeV}} \cdot N_{p,max}|_{7\text{TeV}}}{E_{peak}|_{E_b}} &\Longrightarrow D_{\text{BLM}} = \frac{\text{CF}|_{E_b} \cdot N_{p,max}|_{E_b}}{\Delta T_{\text{RS}}} = \frac{\text{CF}|_{E_b}}{E_{peak}|_{E_b}} \cdot \frac{K_N}{\Delta T_{\text{RS}}} \\ &\text{Long RSs} & \text{7 TeV leads to highest energy deposition} \\ R_{p,max}|_{E_b} &= \frac{E_{peak}|_{7\text{TeV}} \cdot R_{p,max}|_{7\text{TeV}}}{E_{peak}|_{E_b}} &\equiv \frac{K_R}{E_{peak}|_{E_b}} &\Longrightarrow D_{\text{BLM}} = \text{CF}|_{E_b} \cdot N_{p,max}|_{E_b} = \frac{\text{CF}|_{E_b}}{E_{peak}|_{E_b}} \cdot K_R \end{split}$$

BLM thresholds proposal (II)

- Calculated with maximum number of protons up to RS08, with maximum proton rate from RS09 to RS12
- More aggressive proposal (i.e. no margin wrt power deposition previously shown)
- Calculated with maximum number of protons up to RS09, value at RS09 extended up to RS12
- Safer proposal for long RSs

BLM thresholds proposal (III)

Comparison between current master thresholds and proposed thresholds

Conclusions and outlook

- Simulation studies for BLM thresholds review have been carried out for TCTs
- Simulated scenario: direct impacts on TCT, jaw moving towards the beam (or orbit drifting towards the jaw)
- Extensive benchmark (qualitative and quantitative) performed to gain confidence on simulated results
- It was possible to study the dependence of BLM response on beam energy and relative position with respect to collimator
- Results combined in a proposal of new BLM thresholds
- Future: compare proposed thresholds with simulation predictions and measurements in case of regular cleaning or in presence of collision debris
- Future: look at other collimator families/materials

Backup slides

Configurations at 6.5 TeV

RIGHT JAW

22

Configurations at 6.5 TeV

24

Benchmark at 6.5 TeV (II)

LHC Collimation Project CERN

Ratio Calibration factor / Peak energy deposition

BLM thresholds proposal (IV)

These thresholds allow the same peak energy deposition no matter the beam energy

