FROM EW SCALE TO DM DIRECT DETECTION

JURE ZUPAN U. OF CINCINNATI

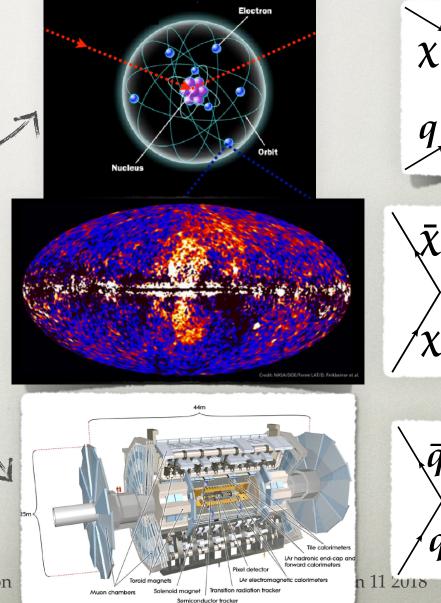
1

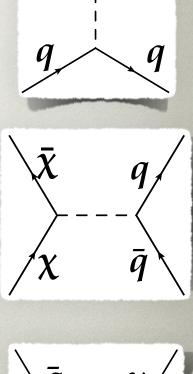
based on work with F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368, 1707.06998;1707.06998;+ J. Brod, A. Gootjes-Dreesbach, M. Tammaro, JZ, 1710.10218 J. Brod, E. Stamou, JZ, 1801.04240

Preparing for Dark Matter Particle Discovery, Gothenburg, Jun 11 2018

CHALLENGE #1

- experimental DM probes at very different energies
 - direct detection:
 ~200 MeV
 - indirect detection:
 DM mass (~ 100 GeV ?)
 - LHC production:
 DM mass + LHC
 kinem.





CHALLENGE #2

- we do not know how DM interacts with visible matter
- could we be missing something?
- EFTs ideal to ask "model independent" questions*

3

*in their domain of validity

Chalmers, Jun 11 2018

AIM

- the aim is to be able to
 - J. Brod, A. Gootjes-Dreesbach, M. Tammaro, JZ, 1710.10218
 take any DM EFT up to dim 7 above EW scale
 - consistently give the leading expression for cross section

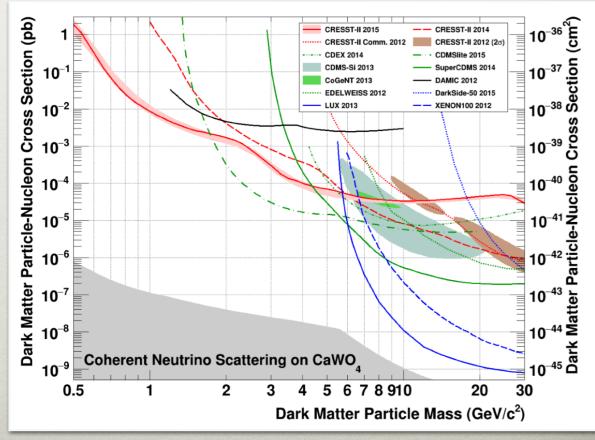
F. Bishara, J. Brod, B. Grinstein, JZ, 1806.nnnn

- including renormalization group running
 F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368, 1707.06998
- consistent counting, including ChPT
- part of this already available in a Mathematica
 & Python package DirectDM F. Bishara, J. Brod, B. Grinstein, JZ, 1708.02678

4

AIM

- in fact the aim is to help with two different problems
- DM-EFT ideal for:
 - comparing different DM direct detection experiments
- DM-EFT interm. step:
 - comparing direct detection with LHC and indirect detection



5

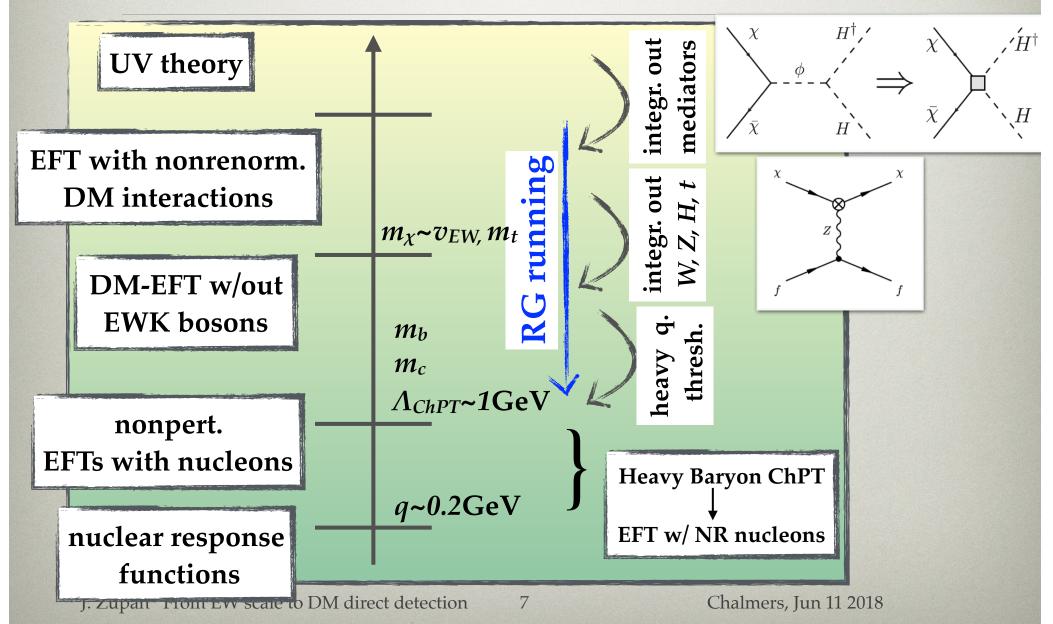
OUTLINE

- renormalization group running
- chiral EFT for DM direct detection
 - from quarks and gluons to nucleons

6

neutrino nonstandard interactions

TOWER OF EFTS



EFT EXPANSION

• at which mass dimension to stop?

$$\mathcal{L}_{\rm EW} = \sum_{a,d} \frac{C_a^{(d)}}{\Lambda^{d-4}} Q_a^{(d)}$$

- at dimension 7 all chiral/Lorentz structures without derivatives
 - probably captures leading behaviour in most theories of DM
- already a large set of operators
 - above EW, if Dirac fermion DM in general EW multiplet

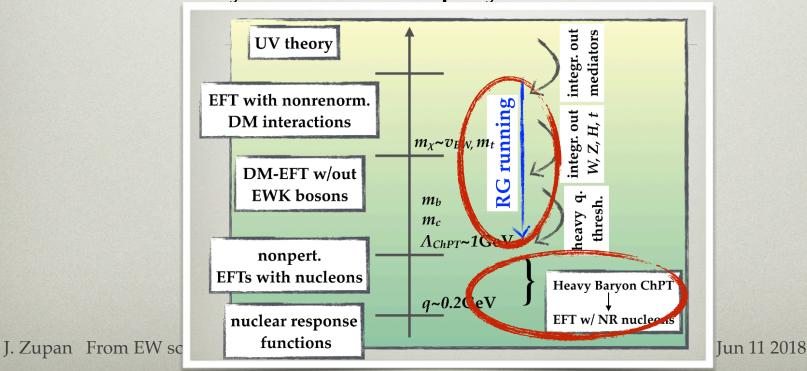
8

- 8 dim-5 ops., 18 dim-6 ops., 100 dim-7 ops.
- this not counting flavor multiplicities
- at μ_{str} ~2 GeV smaller set
 - 2 dim-5 ops., 4 dim-6 ops., 22 dim-7 ops.

Chalmers, Jun 11 2018

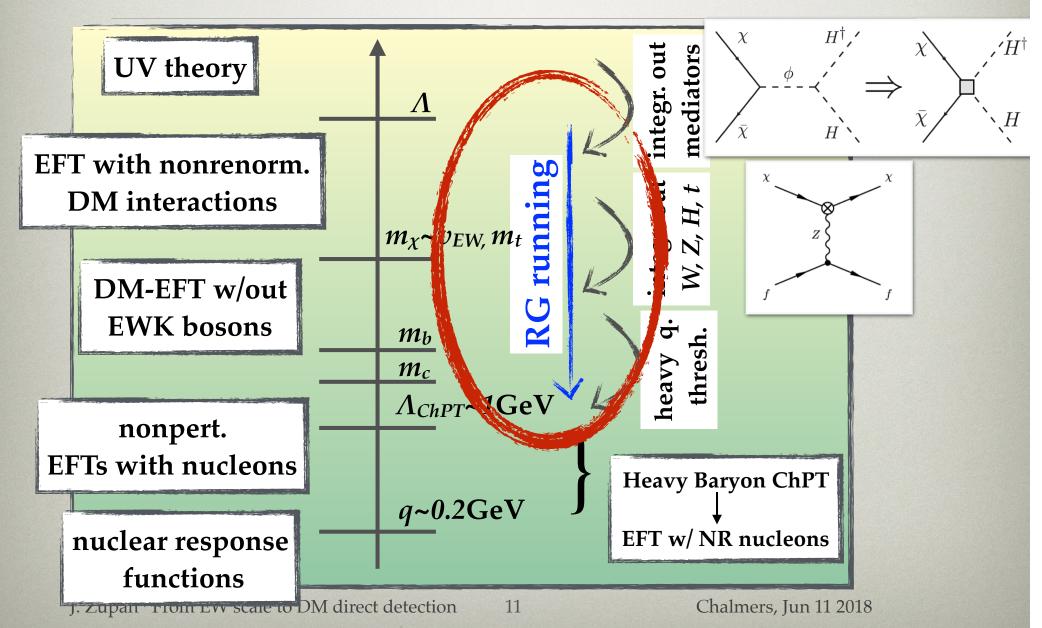
GOALS FOR TODAY

- 2 parts of the talk
 - RG running from UV to μ_{str} ~2 GeV
 - matching at μ_{str}~2 GeV from relativistic theory to nuclear physics



RG RUNNING

TOWER OF EFTS



LOOP CORRECTIONS

see also D'Eramo, Procura, 1411.3342; Berlin, Robertson, Solon, Zurek, 1511.05964; Hill, Solon, 1401.3339, 1309.4092, 1409.8290;Crivellin, Haisch, 1408.5046; + many more

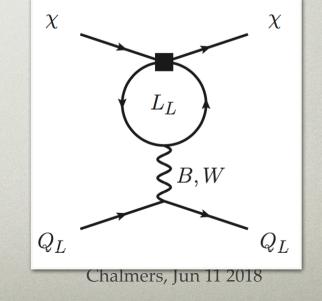
 mixing of operators through RGE (Renormalization Group Equations):

$$\frac{d}{d\log\mu}\mathcal{C}(\mu) = \gamma^T \mathcal{C}(\mu)$$

- Do we need to re-sum the logs?
 - $\alpha_1(\mu_{EW}) \approx 0.01$, $\alpha_2(\mu_{EW}) \approx 0.03$, $\alpha_\lambda(\mu_{EW}) \approx 0.04$, $\alpha_t(\mu_{EW}) \approx 0.08$

12

- No would need $\Lambda \sim 10^4 \text{ TeV}$
- importance of RGE:
 - mixing of velocity suppressed and unsuppressed operators
 - penguin insertions mix lepton and quark operators



RG RUNNING ABOVE EW

allow DM to carry electroweak charges

F. Bishara, J. Brod, B. Grinstein, JZ, 1806.nnnnn

- for now: only fermion DM
- only dim5 and dim6 ops
 - dim7 to be included in the future

13

J. Brod, A. Gootjes-Dreesbach, M. Tammaro, JZ, yymm.nnnn

DIM-5 OPERATORS

• dim-5 operators:

$$Q_{1}^{(5)} = \frac{g_{1}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\chi)B_{\mu\nu}, Q_{2}^{(5)} = \frac{g_{2}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\tilde{\tau}^{a}\chi)W_{\mu\nu}^{a},$$

$$Q_{3}^{(5)} = (\bar{\chi}\chi)(H^{\dagger}H), \qquad Q_{4}^{(5)} = (\bar{\chi}\tilde{\tau}^{a}\chi)(H^{\dagger}\tau^{a}H),$$

CP odd
$$Q_{5}^{(5)} = i \frac{g_{1}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\gamma_{5}\chi)B_{\mu\nu}, Q_{6}^{(5)} = i \frac{g_{2}}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\tilde{\tau}^{a}\gamma_{5}\chi)W_{\mu\nu}^{a}, Q_{7}^{(5)} = i(\bar{\chi}\gamma_{5}\chi)(H^{\dagger}H), \qquad Q_{8}^{(5)} = i(\bar{\chi}\tilde{\tau}^{a}\gamma_{5}\chi)(H^{\dagger}\tau^{a}H).$$

DIM-6 OPERATORS

• DM coupling to quark currents

 $\begin{aligned} Q_{1,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\tilde{\tau}^{a}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{a}Q_{L}^{i}), \ Q_{5,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\tilde{\tau}^{a}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{a}Q_{L}^{i}), \\ Q_{2,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{i}), \qquad Q_{6,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{i}), \\ Q_{3,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{u}_{R}^{i}\gamma^{\mu}u_{R}^{i}), \qquad Q_{7,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{u}_{R}^{i}\gamma^{\mu}u_{R}^{i}), \\ Q_{4,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{i}), \qquad Q_{8,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{i}). \end{aligned}$

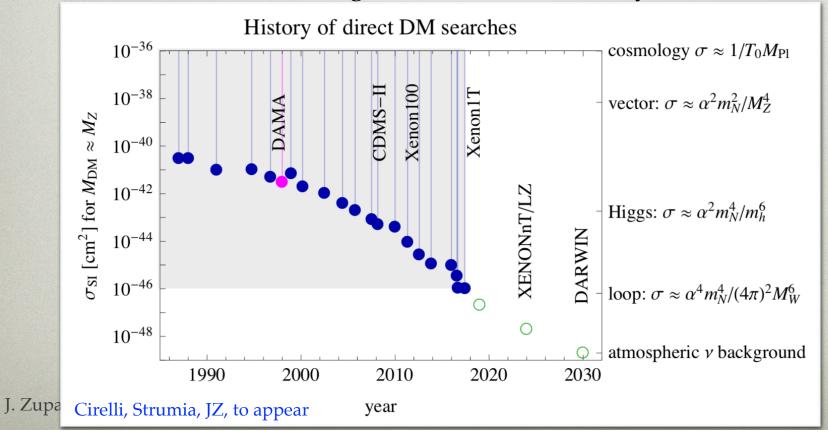
• DM coupling to lepton currents

 $\begin{aligned} Q_{9,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\tilde{\tau}^{a}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}\tau^{a}L_{L}^{i}), \ Q_{12,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\tilde{\tau}^{a}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}\tau^{a}L_{L}^{i}), \\ Q_{10,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}L_{L}^{i}), \qquad Q_{13,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{L}_{L}^{i}\gamma^{\mu}L_{L}^{i}), \\ Q_{11,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{\ell}_{R}^{i}\gamma^{\mu}\ell_{R}^{i}), \qquad Q_{14,i}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{\ell}_{R}^{i}\gamma^{\mu}\ell_{R}^{i}). \end{aligned}$

• DM coupling to Higgs currents $Q_{15}^{(6)} = (\bar{\chi}\gamma^{\mu}\tilde{\tau}^{a}\chi)(H^{\dagger}i\stackrel{\leftrightarrow}{D^{a}}_{\mu}H), Q_{17}^{(6)} = (\bar{\chi}\gamma^{\mu}\gamma_{5}\tilde{\tau}^{a}\chi)(H^{\dagger}i\stackrel{\leftrightarrow}{D^{a}}_{\mu}H),$ $Q_{16}^{(6)} = (\bar{\chi}\gamma^{\mu}\chi)(H^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}H), \qquad Q_{18}^{(6)} = (\bar{\chi}\gamma^{\mu}\gamma_{5}\chi)(H^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}H).$ J. Zupan From EVV scale to DIVI direct detection 15 Chalmers, Jun 11 2018

HIGHER DIM OPS?

- 0-th order question:
 - since renormalizable EW interactions, do we care about higher dim ops?
- if tree level Z exchange allowed, ruled out by direct detection

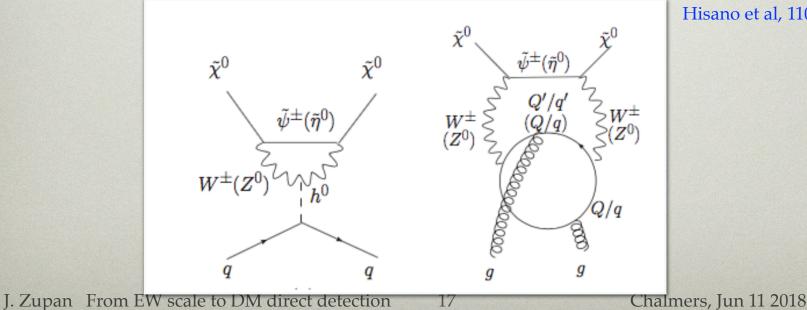


HIGHER DIM OPS?

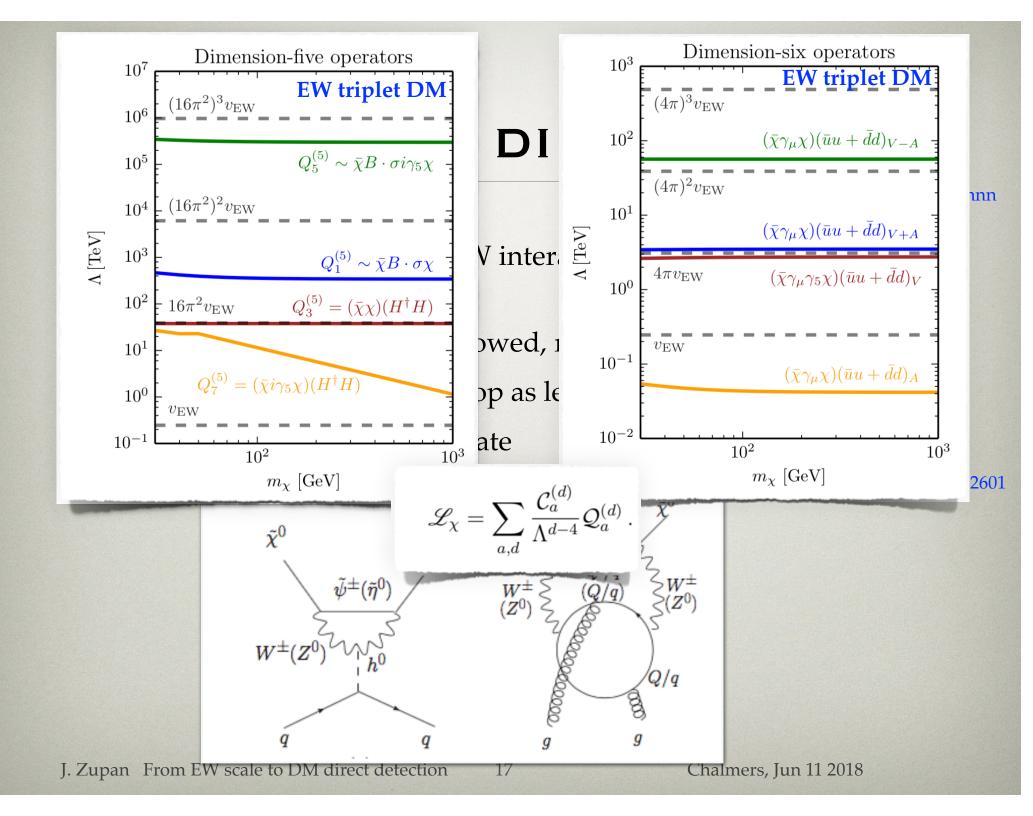
• 0-th order question:

F. Bishara, J. Brod, B. Grinstein, JZ, 1806.nnnn

- since renormalizable EW interactions, do we care about higher dim ops?
- if tree level Z exchange allowed, ruled out by direct detection
- this leaves 1-loop and 2-loop as leading
- higher dim ops can dominate

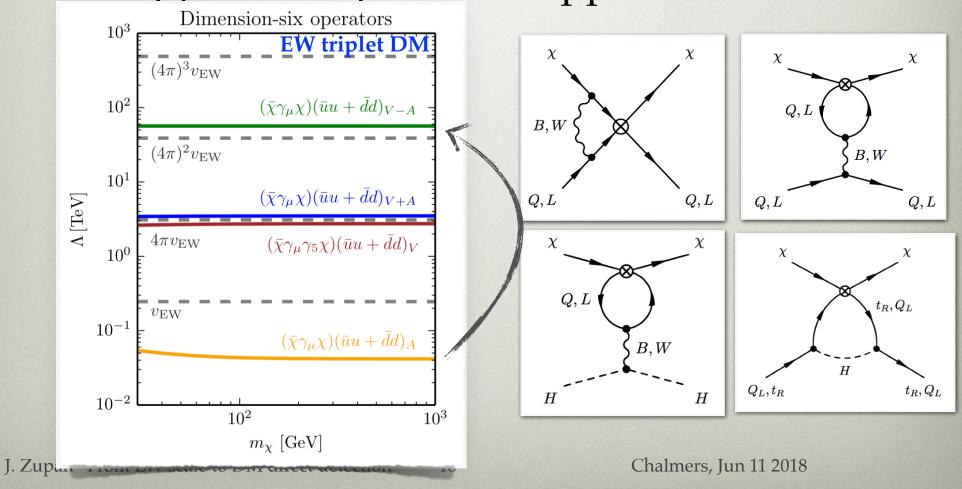


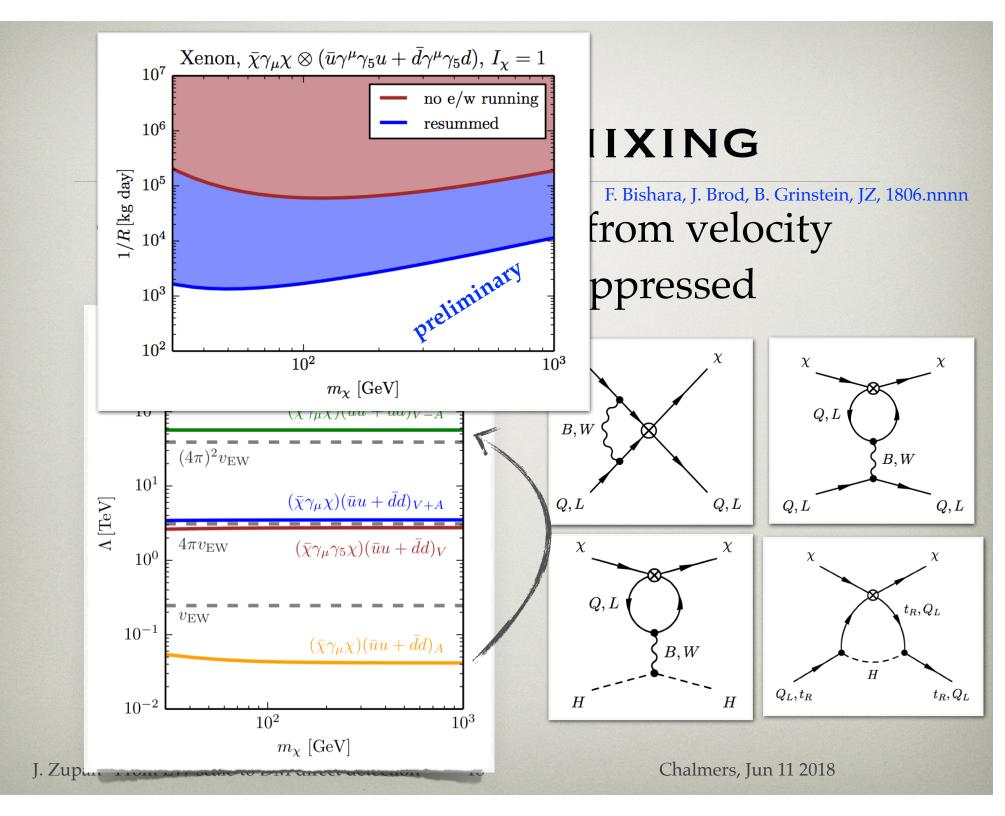
Hisano et al, 1104.0228, 1007.2601



EFFECTS OF MIXING

 the mixing important if from velocity suppressed ops. to unsuppressed

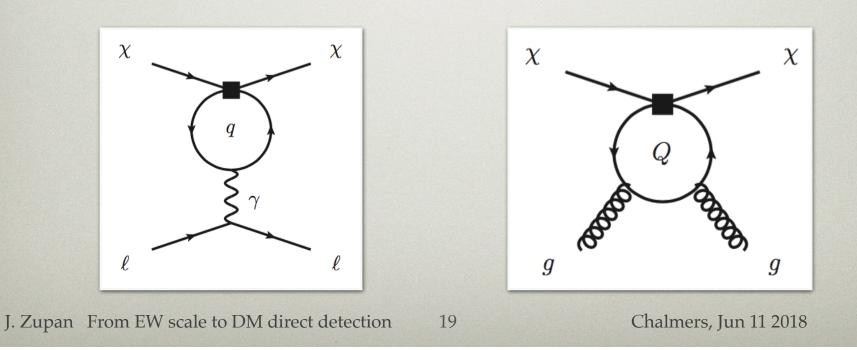




RUNNING BELOW EW

e.g., Hill, Solon, 1409.8290

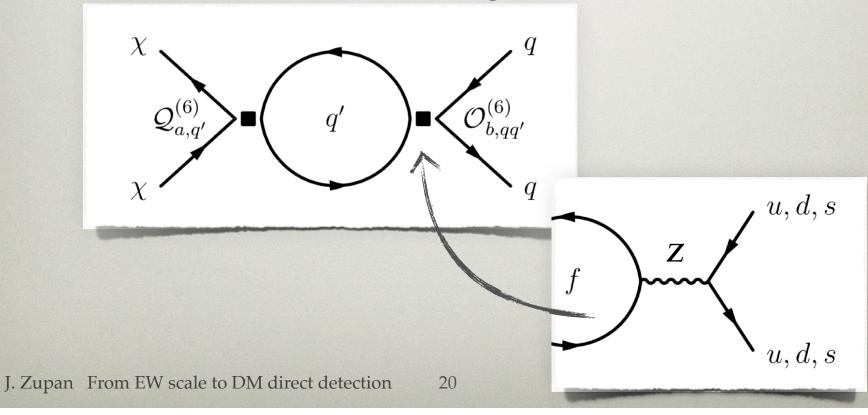
- below EW: QCD / QED running is well-known
- penguin insertions mix lepton and quark ops
- matching at flavor thresholds



DOUBLE WEAK INSERTIONS

D'Eramo, Procura, 1411.3342; Brod, Stamou, JZ, 1801.04240

- in order to have xsecs to O(1) need to include double weak insertions
 - and resum QCD logs



DOUBLE WEAK INSERTIONS

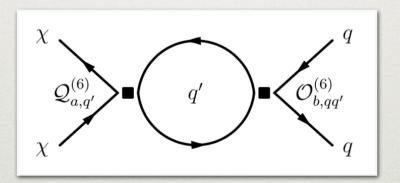
Brod, Stamou, JZ, 1801.04240 • QED and double weak insertions important only for dim 6 operators $\mathcal{Q}_{1,f}^{(6)} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{f}\gamma^{\mu}f) \,,$ $\left| \mathcal{Q}_{2,f}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{f}\gamma^{\mu}f) \right.,$ $\mathcal{Q}_{3,f}^{(6)} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{f}\gamma^{\mu}\gamma_{5}f) \,,$ $\mathcal{Q}_{4,f}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{f}\gamma^{\mu}\gamma_{5}f)$ $\sigma \propto \left(rac{\mathcal{C}_a^{(d)}}{\Lambda^{d-4}}\mathcal{A}[\mathcal{Q}_a^{(d)}]
ight)$ cross sections $\mathcal{A}[\mathcal{Q}_{1.c(b)}^{(6)}] = 0\,,$ $\mathcal{A}[\mathcal{Q}_{1,s}^{(6)}] = 0,$ $\mathcal{A}[\mathcal{Q}_{1,u(d)}^{(6)}] \sim A \,,$ $\mathcal{A}[\mathcal{Q}_{2,u(d)}^{(6)}] \sim \max\left\{ v_T A, \frac{q}{m_N} \right\}, \quad \mathcal{A}[\mathcal{Q}_{2,s}^{(6)}] = 0,$ $\mathcal{A}[\mathcal{Q}_{2,c(b)}^{(6)}] = 0\,,$ $\mathcal{A}[\mathcal{Q}_{3,u(d)}^{(6)}] \sim \max\left\{v_T, \frac{q}{m_{\gamma}}\right\}, \qquad \mathcal{A}[\mathcal{Q}_{3,s}^{(6)}] \sim \Delta s \mathcal{A}[\mathcal{Q}_{3,q}^{(6)}], \quad \mathcal{A}[\mathcal{Q}_{3,c(b)}^{(6)}] \sim \Delta c(b) \mathcal{A}[\mathcal{Q}_{3,q}^{(6)}],$ $\mathcal{A}[\mathcal{Q}_{4,s}^{(6)}] \sim \Delta s \mathcal{A}[\mathcal{Q}_{4,q}^{(6)}], \quad \mathcal{A}[\mathcal{Q}_{4,c(b)}^{(6)}] \sim \Delta c(b) \mathcal{A}[\mathcal{Q}_{4,q}^{(6)}],$ $\mathcal{A}[\mathcal{Q}_{4,u(d)}^{(6)}] \sim 1\,,$ $\Delta c \approx -5 \cdot 10^{-4}, \ \Delta b \approx -5 \cdot 10^{-5}$ J. Zupan From EW scale to DM direct detection 21

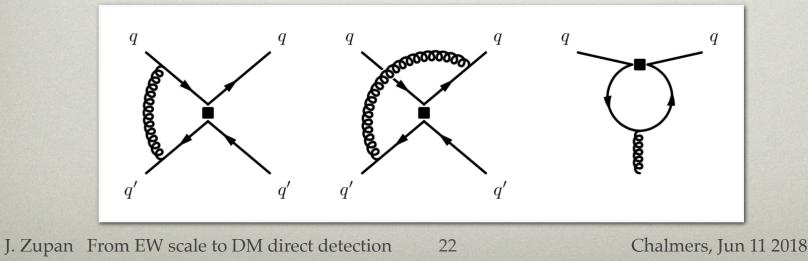
$$\begin{array}{c} \textbf{DOU} \\ \textbf{including QED corrections} \\ \textbf{M} \\ \textbf{OUI} \\ \textbf{$$

$$\begin{array}{c} \textbf{DOU} \\ \textbf{including QED corrections} \\ \textbf{OUI} \\ \textbf{0} \\ \textbf$$

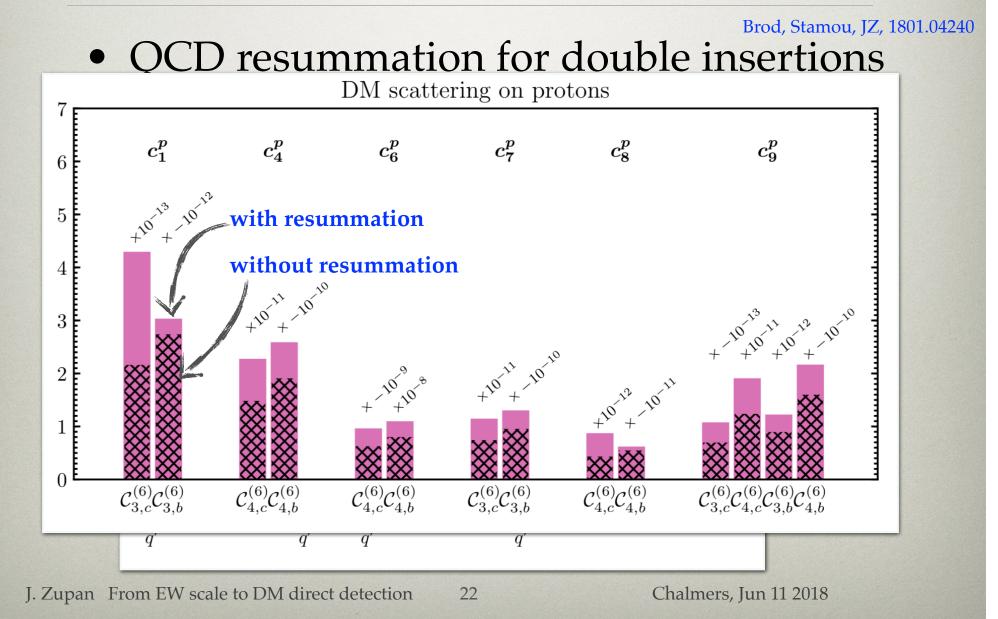
QCD RESUMMATION

- QCD resummation for double insertions
- required since $(\alpha_s/\pi)\log(m_W/\Lambda_{had}) \sim O(1)$





QCD RESUMMATION



WHAT KIND OF MODELS?

- not completely trivial to write models where these the leading effect
- e.g. at EW scale AxA op. with only *b*-quarks requires

$$Y_{\chi}C_{5,3}^{(6)} = 4C_{6,3}^{(6)} = -2C_{8,3}^{(6)} .$$

$$Q_{5,i}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\tilde{\tau}^{a}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}\tau^{a}Q_{L}^{i}) ,$$

$$Q_{6,i}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{i}) ,$$

$$Q_{7,i}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{u}_{R}^{i}\gamma^{\mu}u_{R}^{i}) ,$$

$$Q_{8,i}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{i}) ,$$

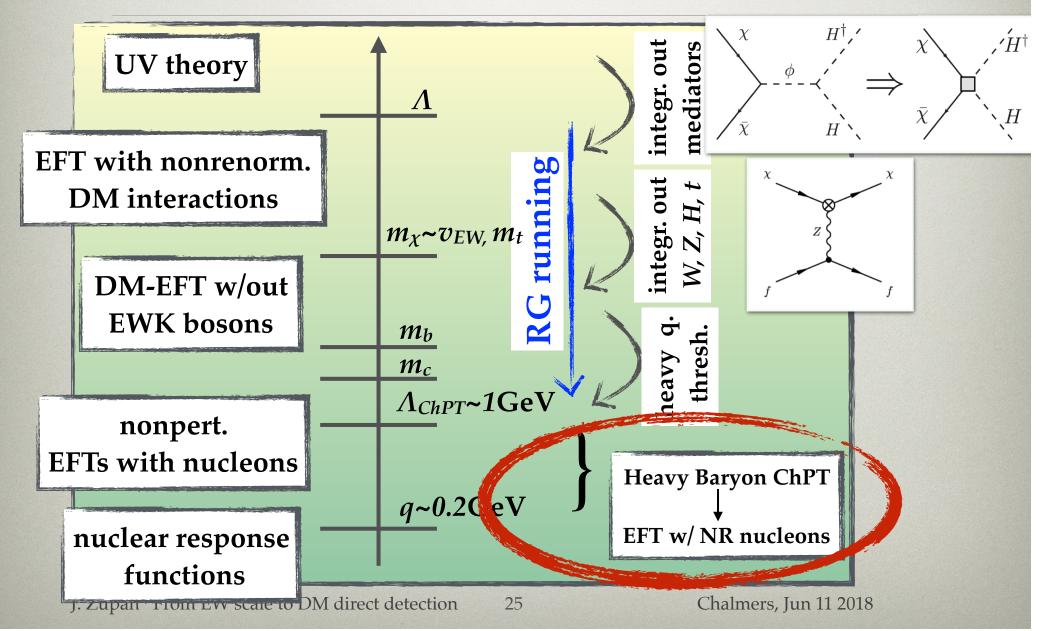
- DM needs to be part of EW multiplet
- DM mass eigenstate a Majorana to suppress Z exchange
- if DM a singlet then necessarily also couplings to tops

J. Zupan From EW scale to DM direct detection 23

Chalmers, Jun 11 2018

MATCHING TO NUCLEAR PHYSICS

TOWER OF EFTS



DIRECT DM DETECTION KINEMATICS

- WIMPS form DM halo
 - typical velocity $v \sim 10^{-3}$
- scatters on target nuclei $\chi N \rightarrow \chi N$
 - typical energy deposit

$$E_d = 2\frac{\mu_{\chi}^2}{M_A}v^2 \sim 2\text{keV}\left(\frac{120GeV}{M_A}\right)\left(\frac{\mu_{\chi}}{10\text{GeV}}\right)^2\left(\frac{v}{10^{-3}}\right)^2$$

typical momentum exchange

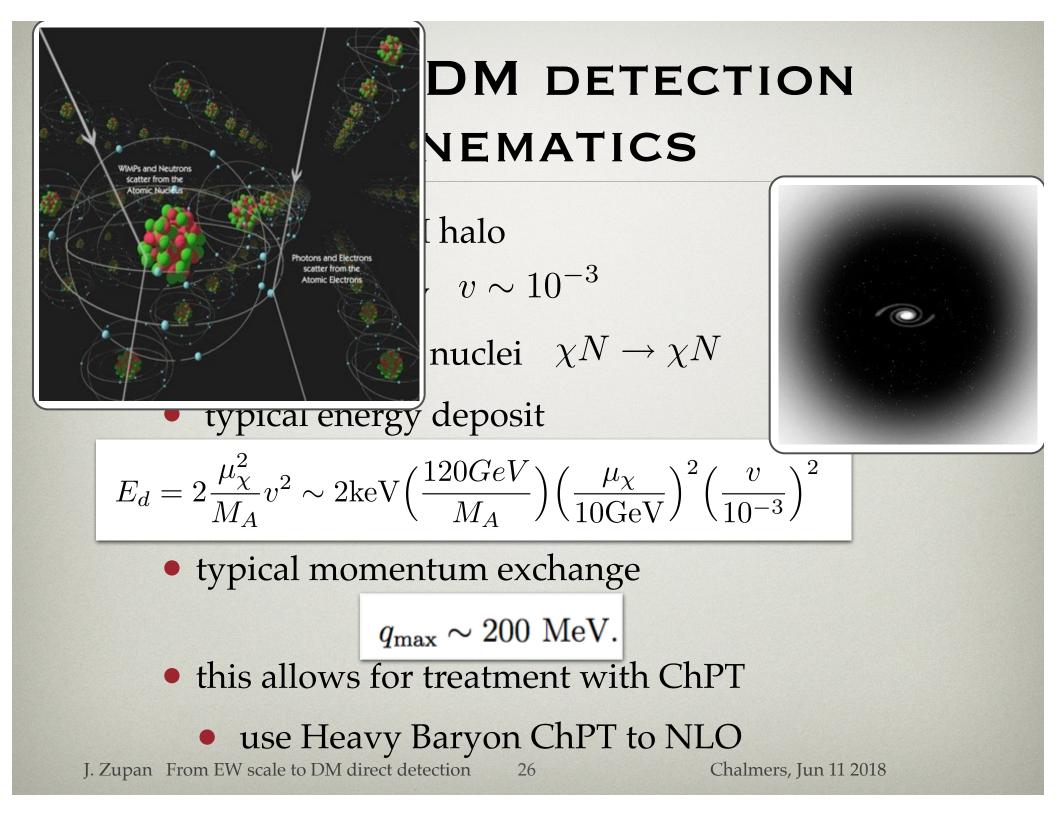
 $q_{\rm max} \sim 200$ MeV.

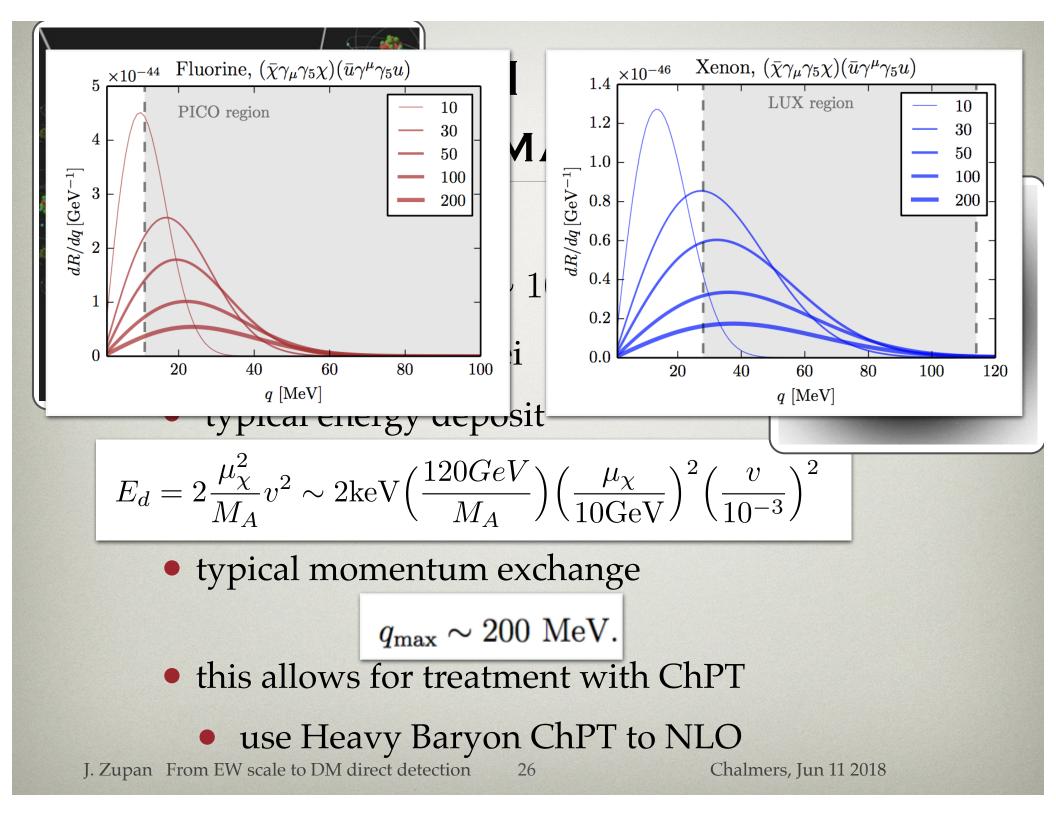
- this allows for treatment with ChPT
 - use Heavy Baryon ChPT to NLO

J. Zupan From EW scale to DM direct detection

26

Chalmers, Jun 11 2018



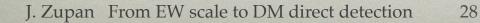


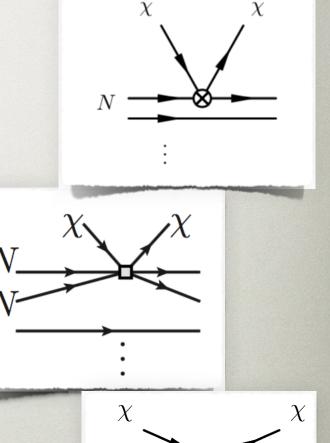
$$\begin{aligned} \mathcal{Q}_{1}^{(5)} &= \frac{e}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\chi)F_{\mu\nu}, \qquad \mathcal{Q}_{2}^{(5)} &= \frac{e}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}i\gamma_{5}\chi)F_{\mu\nu} \\ \mathcal{Q}_{1,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q), \qquad \mathcal{Q}_{2,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}q), \\ \mathcal{Q}_{3,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q), \qquad \mathcal{Q}_{4,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q), \qquad \mathbf{quarks and gluons} \\ \mathcal{Q}_{1}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\bar{\chi}\chi)G^{a\mu\nu}G^{a}_{\mu\nu}, \qquad \mathcal{Q}_{2}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\bar{\chi}i\gamma_{5}\chi)G^{a\mu\nu}G^{a}_{\mu\nu}, \\ \mathcal{Q}_{3}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\bar{\chi}\chi)G^{a\mu\nu}\tilde{G}^{a}_{\mu\nu}, \qquad \mathcal{Q}_{4}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\bar{\chi}i\gamma_{5}\chi)G^{a\mu\nu}\tilde{G}^{a}_{\mu\nu}, \\ \mathcal{Q}_{5,q}^{(7)} &= m_{q}(\bar{\chi}\chi)(\bar{q}q), \qquad \mathcal{Q}_{6,q}^{(7)} &= m_{q}(\bar{\chi}i\gamma_{5}\chi)(\bar{q}q), \\ \mathcal{Q}_{7,q}^{(7)} &= m_{q}(\bar{\chi}\chi)(\bar{q}i\gamma_{5}q) \qquad \mathcal{Q}_{8,q}^{(7)} &= m_{q}(\bar{\chi}i\gamma_{5}\chi)(\bar{q}\gamma_{5}q). \end{aligned}$$

GENERAL LESSONS

F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368

- chirally leading contributions due to DM scattering on a single nucleon current
 - DM coupling to four-nucleon ops. always *O*(*q*³) suppressed
 - long distance contribs. only
 O(q) suppr. for scalar couplings
- not all NR ops. generated
- switching on just one NR oper. at a time not justified





N

Chalmers

IMPLICATIONS FOR COMBINED EXCLUSIONS

- what is often done in global analyses of DM direct detection results
 - take only one NR operator
 - keep coefficient *q* independent

$$\begin{aligned} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, & \mathcal{O}_{2}^{N} &= \left(v_{\perp}\right)^{2} \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}}\right), & \mathcal{O}_{4}^{N} &= \vec{S}_{\chi} \cdot \vec{S}_{N}, \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}}\right) \mathbb{1}_{N}, & \mathcal{O}_{6}^{N} &= \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}\right), \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp}\right), & \mathcal{O}_{8}^{N} &= \left(\vec{S}_{\chi} \cdot \vec{v}_{\perp}\right) \mathbb{1}_{N}, \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i\vec{q}}{m_{N}} \times \vec{S}_{N}\right), & \mathcal{O}_{10}^{N} &= -\mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \frac{i\vec{q}}{m_{N}}\right), \\ \mathcal{O}_{11}^{N} &= -\left(\vec{S}_{\chi} \cdot \frac{i\vec{q}}{m_{N}}\right) \mathbb{1}_{N}, & \mathcal{O}_{12}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{S}_{N} \times \vec{v}_{\perp}\right), \end{aligned}$$

J. Zupan From EW scale to D

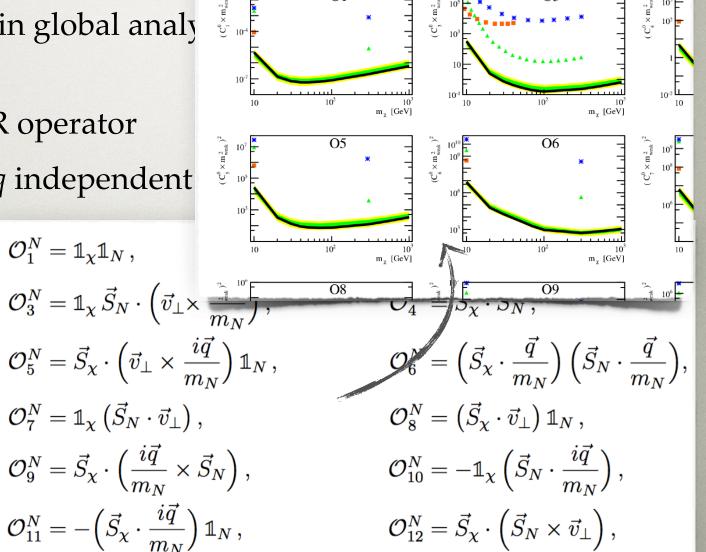
IMPLICATIONS FOR COMBINED EXCLUSIONS

Xenon100, 1705.02614

01

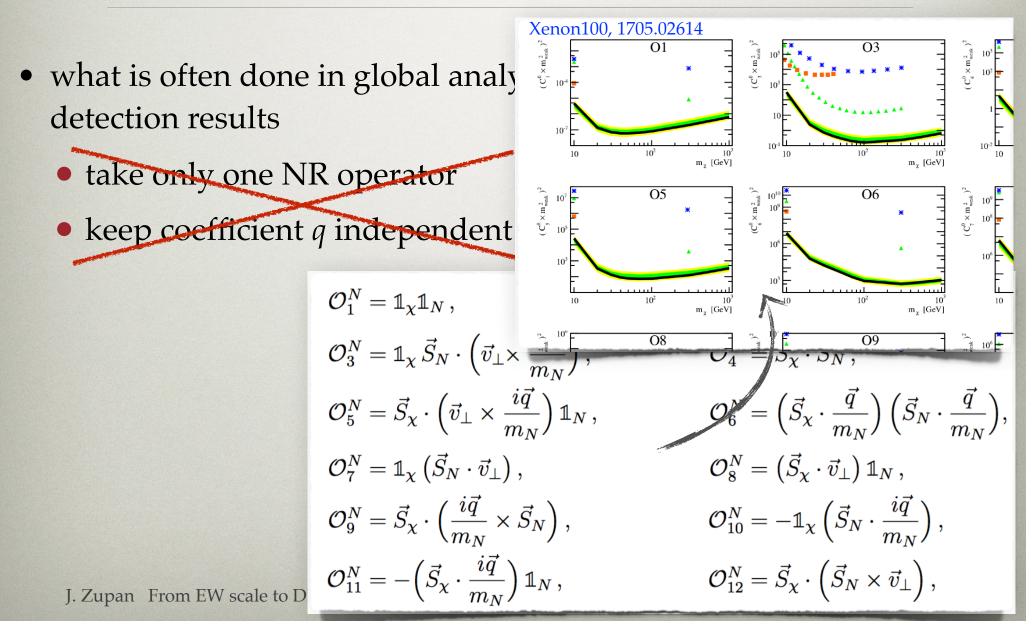
O3

- what is often done in global analy detection results
 - take only one NR operator
 - keep coefficient *q* independent



J. Zupan From EW scale to D

IMPLICATIONS FOR COMBINED EXCLUSIONS



ALL OPERATORS?

- do we need all the operators? F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368; 1707.06998
 - 15 operators with up to 2 derivatives
 - general dim 5 and 6 EFT above EW scale requires at LO

 $\begin{array}{l} \mathcal{O}_{1}^{N} = \mathbb{1}_{\chi}\mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} = \mathbb{1}_{\chi}\vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}}\right), \\ \mathcal{O}_{5}^{N} = \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}}\right)\mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} = \mathbb{1}_{\chi}\left(\vec{S}_{N} \cdot \vec{v}_{\perp}\right), \\ \mathcal{O}_{9}^{N} = \vec{S}_{\chi} \cdot \left(\frac{i\vec{q}}{m_{N}} \times \vec{S}_{N}\right), \\ \mathcal{O}_{11}^{N} = -\left(\vec{S}_{\chi} \cdot \frac{i\vec{q}}{m_{N}}\right)\mathbb{1}_{N}, \\ \mathcal{O}_{13}^{N} = -\left(\vec{S}_{\chi} \cdot \vec{v}_{\perp}\right)\left(\vec{S}_{N} \cdot \frac{i\vec{q}}{m_{N}}\right), \\ \mathcal{O}_{13}^{N} = -\left(\vec{S}_{\chi} \cdot \vec{v}_{\perp}\right)\left(\vec{S}_{N} \cdot \frac{i\vec{q}}{m_{N}}\right), \\ \mathcal{O}_{13}^{N} = -\left(\vec{S}_{\chi} \cdot \vec{v}_{\perp}\right)\left(\vec{S}_{N} \cdot \frac{i\vec{q}}{m_{N}}\right), \\ \end{array} \right)$

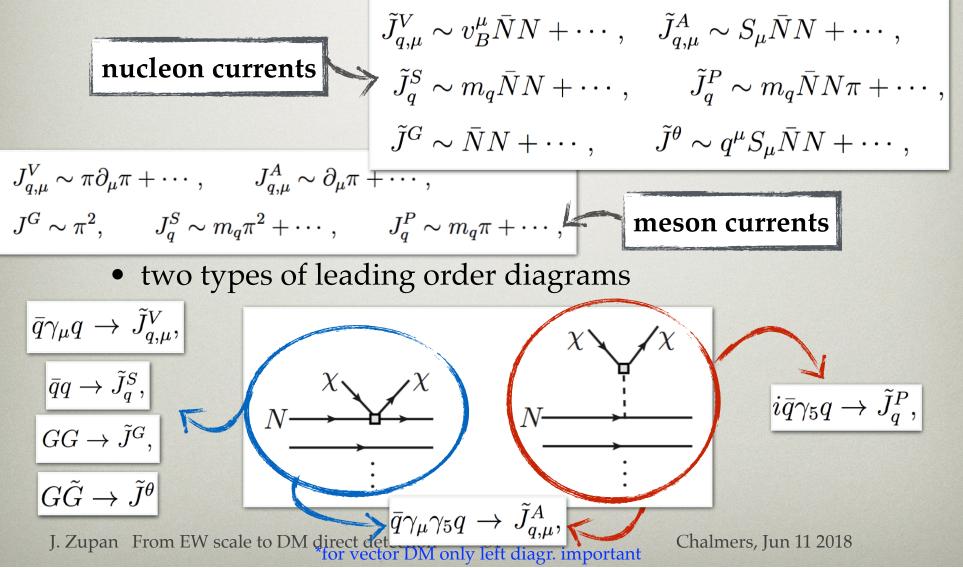
• do we need the $O(q^2)$ terms? Can we stop at $O(q^2)$?

30

J. Zupan From EW scale to DM direct detection

AT LO IN HEAVY BARYON CHPT F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368

quark and gluon currents hadronize as



COMPARISON

F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368; 1707.06998 see also, e.g., Cirelli, Del Nobile, Panci, 1307.5955; Hill, Solon, 1409.8290;

 for most NR operators the results agree with previous literature

$$\begin{split} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_{N}} \right), \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i q}{m_{N}} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp} \right), \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i \vec{q}}{m_{N}} \times \vec{S}_{N} \right), \\ \mathcal{O}_{11}^{N} &= - \left(\vec{S}_{\chi} \cdot \frac{i \vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \end{split}$$

32

J. Zupan From EW scale to DM direct detection

• what is new?

COMPARISON

see also Hoferichter, Klos, and Schwenk, 1503.04811

- what is new?
 - re-amphasising the importance of (pion) pole enhanced contribs.

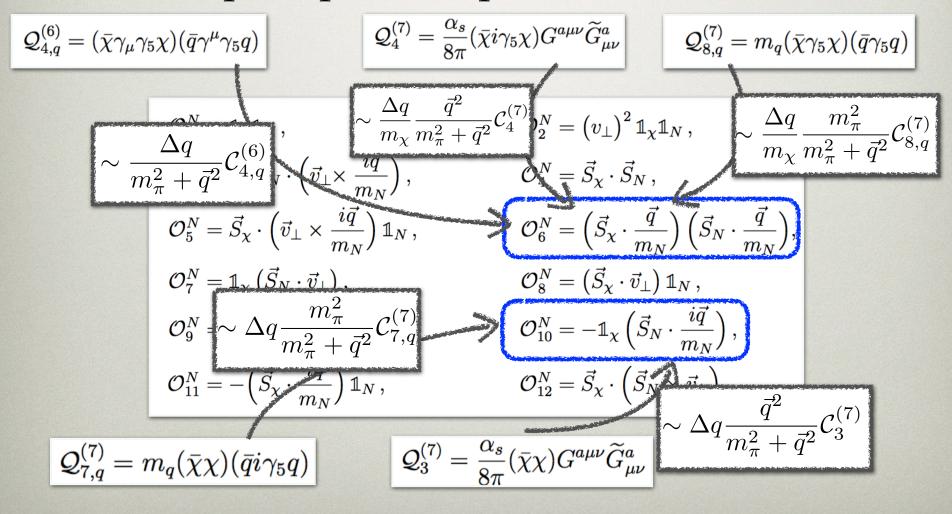
$$\begin{split} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_{N}} \right), \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp} \right), \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i \vec{q}}{m_{N}} \times \vec{S}_{N} \right), \\ \mathcal{O}_{11}^{N} &= - \left(\vec{S}_{\chi} \cdot \frac{i \vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \end{split}$$

33

J. Zupan From EW scale to DM direct detection

PION POLES

• the pion poles important for

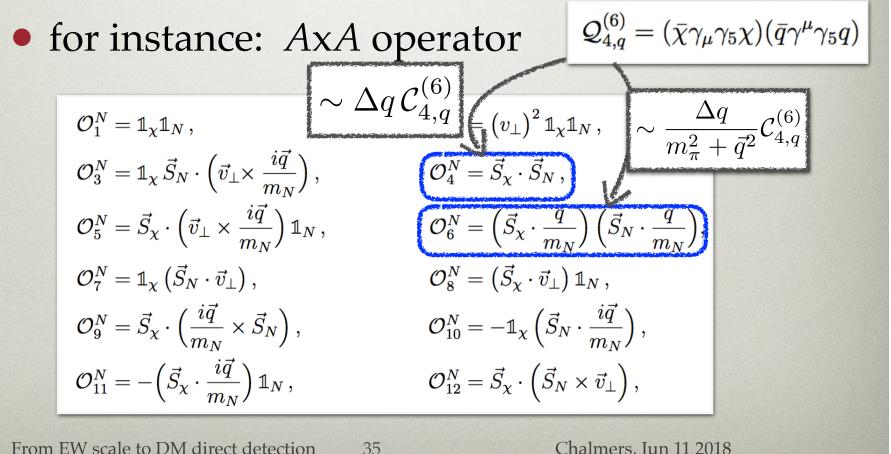


34

J. Zupan From EW scale to DM direct detection

COMPARISON

- what is new?
 - consistent chiral counting

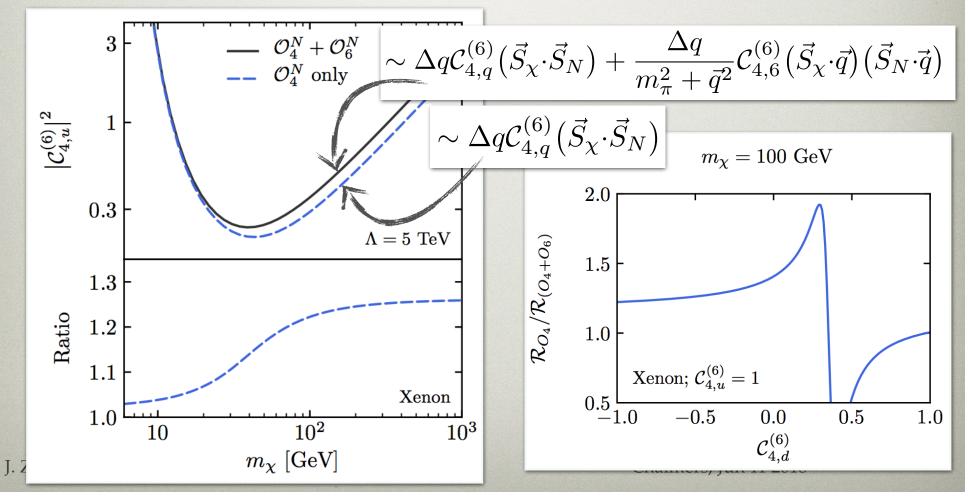


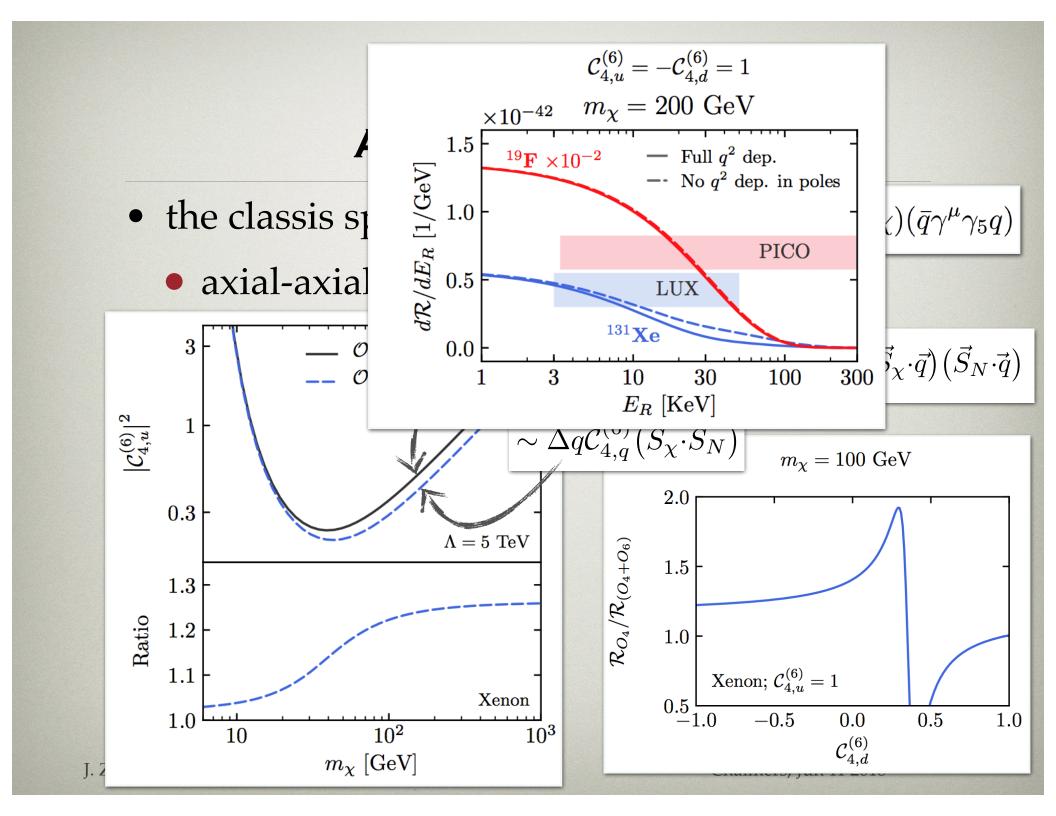
AXIAL-AXIAL

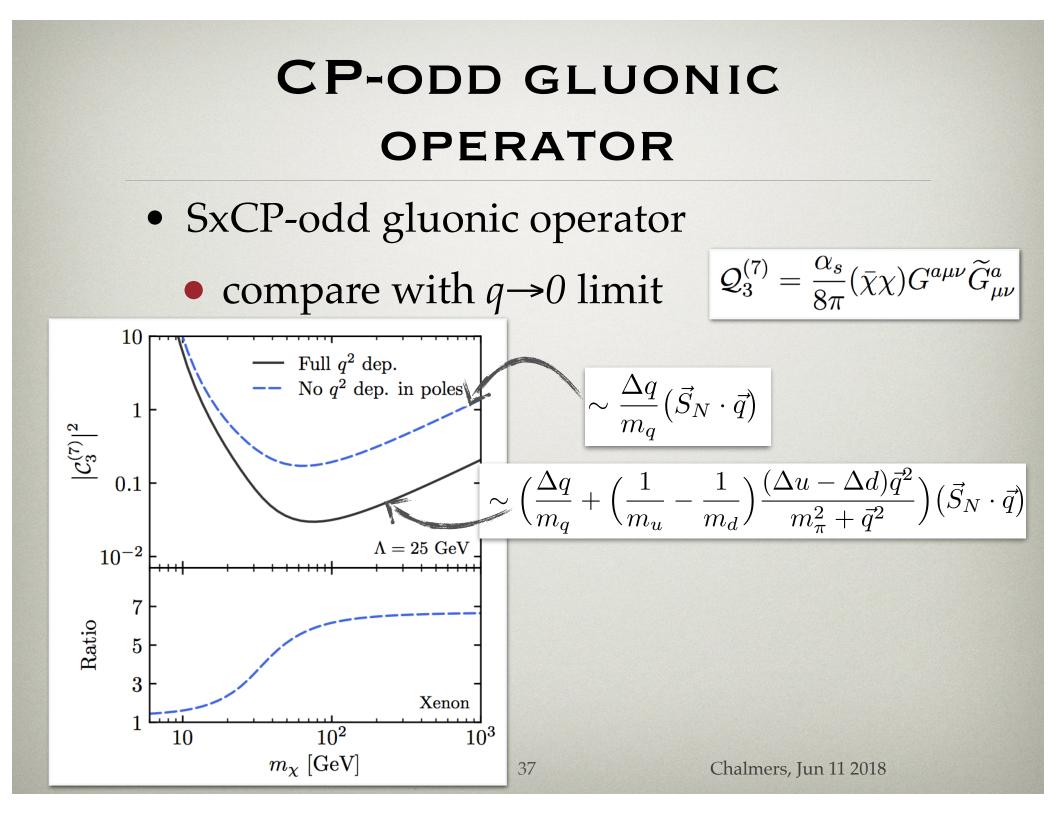
• the classis spin-dep. oper.

$$\mathcal{Q}_{4,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)$$

• axial-axial interaction: $C_{4u} = -C_{4d}$







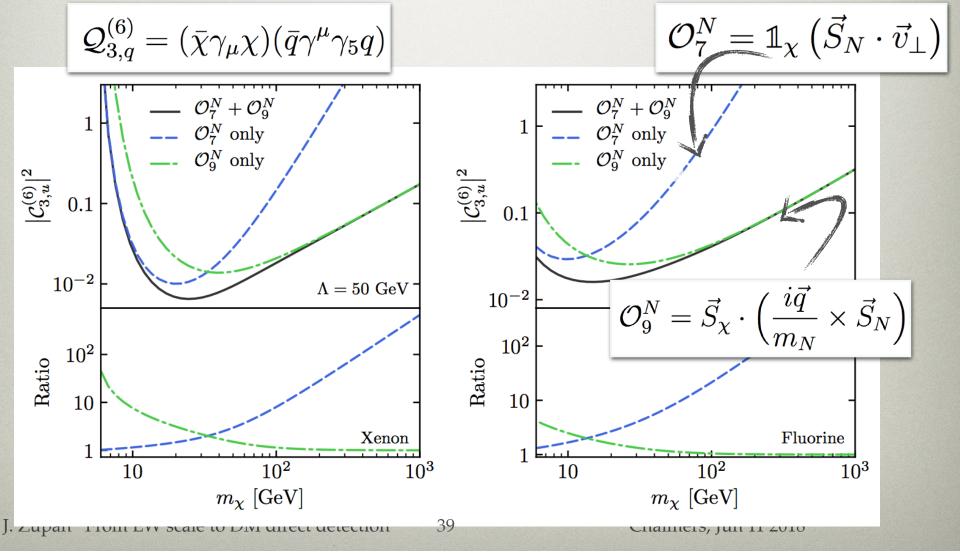
ENERGY DEPENDENCE

• The differential event rate as a function of the momentum transfer as an example: $Q_4^{(7)}$



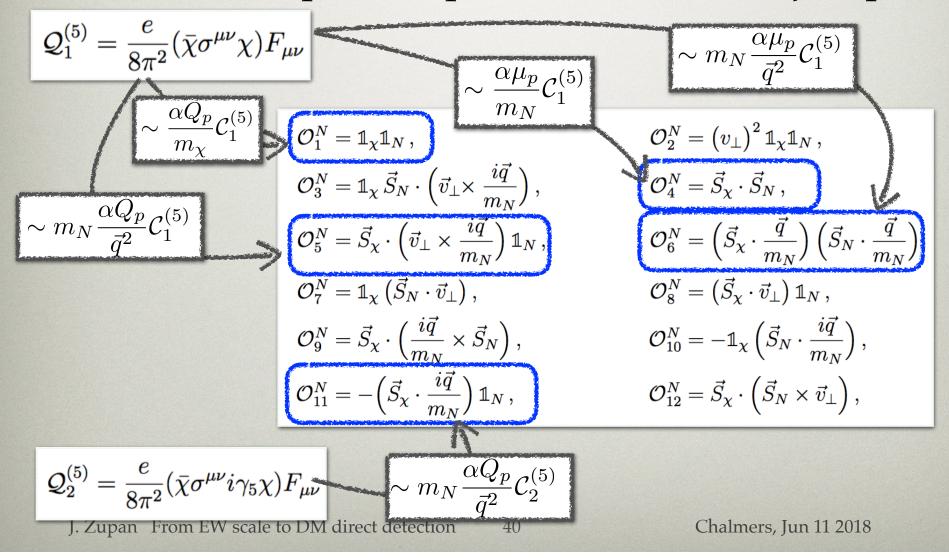
VECTOR-AXIAL

• vector-axial interaction: $C_{3u}=C_{3d}=C_{3s}=1$

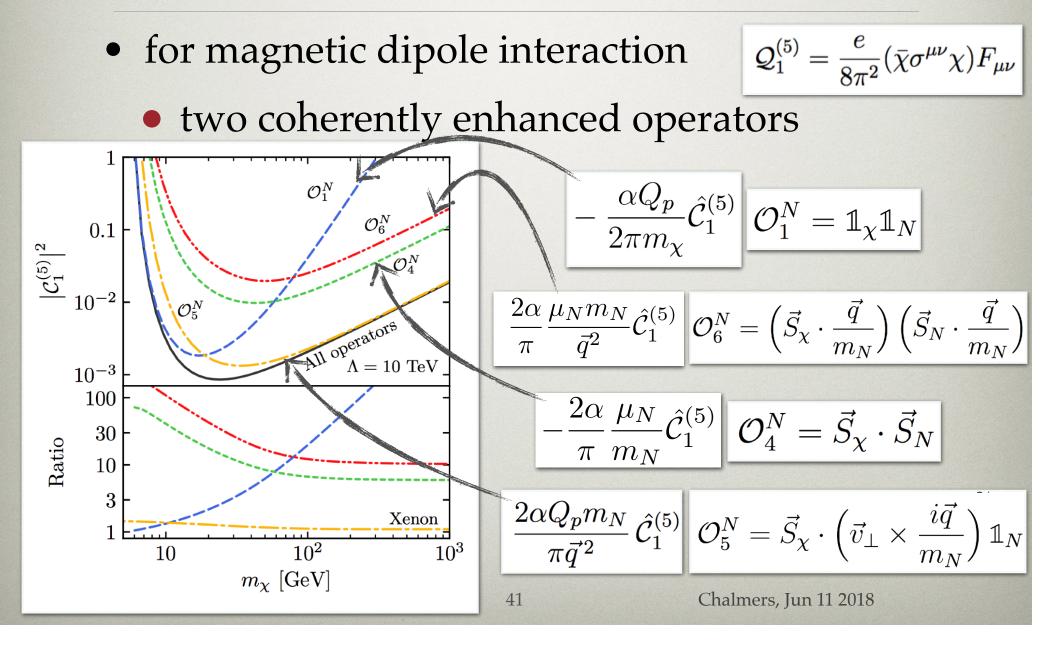


PHOTON POLES

• due to photon poles also need $O(q^2)$ ops



PHOTON POLES - XENON

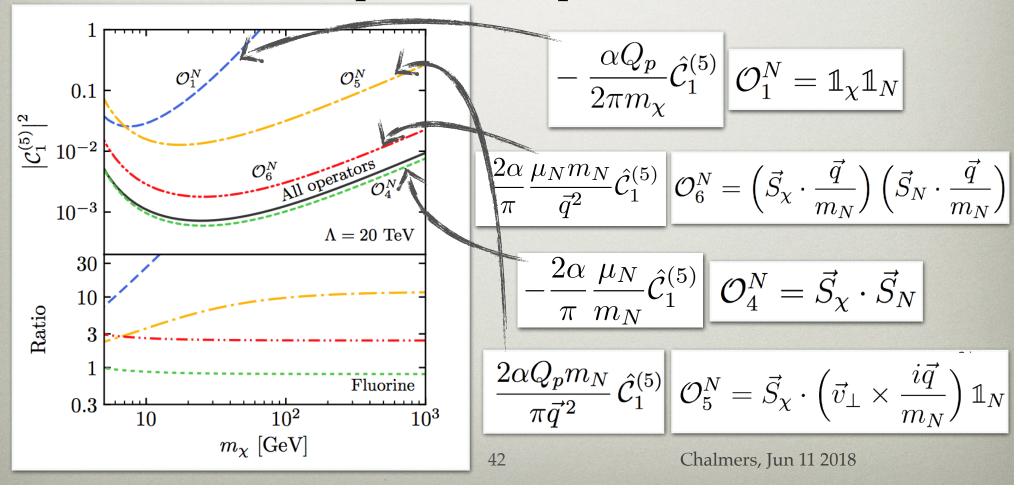


PHOTON POLES - FLUORINE

magnetic dipole interaction

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\chi} \sigma^{\mu\nu} \chi) F_{\mu\nu}$$

both SD operators important



THE INVERSE PROBLEM

- which of the NR operators can consistently switch on one by one?
- $\exists Q_a^{(d)}$: only one \mathcal{O}_i^N generated assume d < 6 above EW

$$\begin{split} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_{N}} \right), \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp} \right), \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i \vec{q}}{m_{N}} \times \vec{S}_{N} \right), \\ \mathcal{O}_{11}^{N} &= - \left(\vec{S}_{\chi} \cdot \frac{i q}{m_{N}} \right) \mathbb{1}_{N}, \end{split}$$

$$\begin{aligned} \mathcal{O}_{2}^{N} &= \left(v_{\perp} \right)^{2} \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{4}^{N} &= \vec{S}_{\chi} \cdot \vec{S}_{N}, \\ \mathcal{O}_{6}^{N} &= \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \right), \\ \mathcal{O}_{8}^{N} &= \left(\vec{S}_{\chi} \cdot \vec{v}_{\perp} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{10}^{N} &= -\mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \frac{i \vec{q}}{m_{N}} \right), \\ \mathcal{O}_{12}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{S}_{N} \times \vec{v}_{\perp} \right), \end{aligned}$$

43

J. Zupan From EW scale to DM direct detection

THE INVERSE PROBLEM

- which of the NR operators can consistently switch on one by one?
- $\exists Q_a^{(d)}$: only one \mathcal{O}_i^N generated **assume d < 7 above EW**

$$\begin{split} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_{N}} \right), \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp} \right), \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i \vec{q}}{m_{N}} \times \vec{S}_{N} \right), \\ \mathcal{O}_{11}^{N} &= - \left(\vec{S}_{\chi} \cdot \frac{i q}{m_{N}} \right) \mathbb{1}_{N}, \end{split}$$

$$\begin{aligned} \mathcal{O}_{2}^{N} &= \left(v_{\perp} \right)^{2} \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{4}^{N} &= \vec{S}_{\chi} \cdot \vec{S}_{N}, \\ \mathcal{O}_{6}^{N} &= \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \right), \\ \mathcal{O}_{8}^{N} &= \left(\vec{S}_{\chi} \cdot \vec{v}_{\perp} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{10}^{N} &= -\mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \frac{i \vec{q}}{m_{N}} \right), \\ \mathcal{O}_{12}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{S}_{N} \times \vec{v}_{\perp} \right), \end{aligned}$$

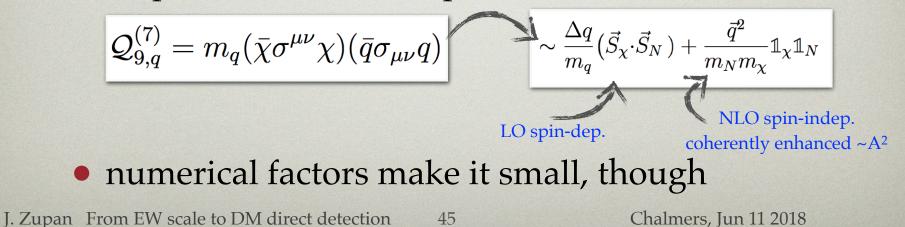
44

J. Zupan From EW scale to DM direct detection

NLO - SINGLE CURRENTS

F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368; 1707.06998

- for many operators two-nucleon currents highly suppressed
- are *q*² corrections to single currents ever important?
 - part of it captured by form factors for LO operators
 - but also new operators generated
- example: tensor-tensor operator



SCALAR DARK MATTER

- analysis for scalar DM easier
- no DM spin \Rightarrow no cancellations in products of $J_{\chi}x$ (leading chiral J_q)
- for P_q and A_q currents the contribs. are enhanced by pion poles

J. Lupan scale to Divi unect detection NONSTANDARD NEUTRINO INTERACTIONS

COHERENT

Altmannshofer, Tammaro, JZ, 1806.nnnn

 nonstandard neutrino interactions for decades only from neutrino oscillations

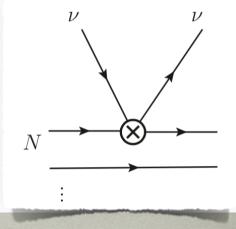
$$\mathcal{L}_{\rm NSI} \supset \frac{G_F}{\sqrt{2}} \sum_{f,\alpha,\beta} \left(\bar{\nu}_{\alpha} \gamma_{\mu} P_L \nu_{\beta} \right) \left(\varepsilon^{fV}_{\alpha\beta} \bar{f} \gamma^{\mu} f + \varepsilon^{fA}_{\alpha\beta} \bar{f} \gamma^{\mu} \gamma_5 f \right)$$

- qualitative change with measurement of coherent neutrino scattering COHERENT, 1708.01294
- can now probe many more NSI
 - one dim-5 and 11 dim-7 ops.

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha) F_{\mu\nu}$$

48

J. Zupan From EW scale to DM direct detection



NSI AND COHERENT

- one important change: neutrinos are relativistic
- simplifies things, since $p_{\nu}.S_N \sim O(E_{\nu})$, while for DM $p_{\chi}.S_N \neq O(m_{\chi})$
- three types of operators
 - interfere with the SM contrib.
 - coherently enchanced but no interf. with SM
 - no coherent enhancement

$$\mathcal{Q}_{1,f}^{(6)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_L\nu_{\alpha})(\bar{f}\gamma^{\mu}f)$$

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha) F_{\mu\nu}$$

$$\mathcal{Q}_4^{(7)} = \frac{\alpha_s}{8\pi} (\bar{\nu}_\beta P_L \nu_\alpha) G^{a\mu\nu} \widetilde{G}^a_{\mu\nu}$$

bounds on NP scale from few GeV to TeV

49

WHAT KIND OF MODELS?

- need to include LEP/EW precision bounds
 - some operators not constrained at all

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha) F_{\mu\nu}$$

others only possible with fine-tuning

 $\mathcal{Q}_{1,f}^{(6)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_L\nu_{\alpha})(\bar{f}\gamma^{\mu}f)$

- future directions
 - include EW+QCD+QED running in the above analysis
 - types of UV complete models
 - can also write EFTs for light mediator NP

J. Zupan From EW scale to DM direct detection 50

CONCLUSIONS

- presented LO + (partial) NLO matching from DM interacting with gluons and quarks to nuclear physics
- not consistent to take single NR operators, should use EFT with gluons and quarks

BACKUP SLIDES