Indirect detection in Milky Way satellites Self-annihilating DM in presence of light force mediator

Mihael Petač In collaboration with Piero Ullio and Mauro Valli

Astroparticle physics group SISSA, Trieste

June 13, 2018

Indirect detection

Search for DM annihilation/decay signatures in the sky

- Use galaxies as particle physics laboratories
- Strong constraints on thermal relics
- Rapid improvements in observational data

⇒ Need for accurate modeling of DM related signals

Current constraints

Figure: Indirect detection constraints on DM annihilation cross-section.

Project outline - arXiv:1804.05052

Motivation:

- Generic enhancement of signal in presence of light mediators ¹
- Probe effect of DM velocity anisotropy on annihilation signal
- Era of high precision cosmology and astronomy (Fermi-LAT, accurate measurements of stellar kinematics, ...)

Outline:

- Model the DM halo phase-space distribution
- Study the annihilation rates in presence of Sommerfeld enhancement
- Apply the analysis to Milky Way satellites

¹Boddy et al. arXiv:1702.00408, Bergström et al. arXiv:1712.03188

Indirect detection

Focus on gamma rays from DM annihilations.

Differential photon flux produced by annihilations:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{1}{8\pi} \frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}} \int \mathrm{d}\Omega \int \mathrm{d}\ell \int \mathrm{d}^3 v_1 \frac{f(\vec{r}, \vec{v}_1)}{m_{\chi}} \int \mathrm{d}^3 v_2 \frac{f(\vec{r}, \vec{v}_2)}{m_{\chi}} \cdot (\sigma v_{\mathrm{rel}})$$

Non-standard ingredients:

- Annihilation cross-section boosted by relative velocity dependent factor **Sommerfeld enhancement**: $\langle \sigma v_{\rm rel} \rangle_0 \rightarrow \langle \sigma v_{\rm rel} \rangle_0 \cdot S(v_{\rm rel})$
- Compute phase-space distribution for various DM density profiles (NFW, Burkert and non-parametric profile)

Sommerfeld enhancement

Generic **boost of cross-section** for non-relativistic particles for interactions mediated light scalar or vector force mediator ϕ (i.e. requires $E_\chi \approx m_\chi$ and $m_\phi \ll \alpha_\chi m_\chi$).

Yukawa coupling gives rise to the following potential:

$$V(r) = \mp \frac{\alpha_{\chi}}{r} exp(-m_{\phi}r)$$

Solve Schrödinger equation to obtain the wave function distortion due to the mediator exchange:

$$\chi''(x) + \left(\frac{v_{
m rel}^2}{lpha_\chi^2} + V(x)\right)\chi(x) = 0 \ \Rightarrow \ S(v_{
m rel};\xi) = \left|\frac{\chi(0)}{\chi(\infty)}\right|^2 \propto \frac{1}{v_{
m rel}^{lpha}}$$

DM phase-space distribution function

Different isotropic modelings present in literature

• Maxwell-Boltzmann approximation:

$$f(r, v) = \frac{\rho_{\mathrm{DM}}(r)}{(2\pi\sigma^2(r))^{3/2}} \cdot \exp\left(\frac{v^2}{2\sigma^2(r)}\right)$$

Eddington's inversion (based on spherical Jeans equation):

$$f(\mathcal{E}) = \frac{1}{\sqrt{8}\pi^2} \frac{\mathrm{d}}{\mathrm{d}\mathcal{E}} \int_0^{\mathcal{E}} \frac{\mathrm{d}\Psi}{\sqrt{\mathcal{E} - \Psi}} \frac{\mathrm{d}\rho}{\mathrm{d}\Psi} \ , \quad \mathcal{E} = \Psi(r) - \frac{v^2}{2}$$

Eddington's inversion gives unique solution for **spherically symmetric** and **ergodic** (hence isotropic) system.

Anisotropic DM phase-space distribution function

Velocity anisotropy characterized by: $\beta(r) \equiv 1 - \frac{\sigma_t^2}{2\sigma_r^2}$

Slope-anisotropy inequality²: $-\frac{d \ln \rho}{d \ln r} \ge 2\beta$

We consider the following possible choices:

• Osipkov-Merritt model: $\beta(r) = \frac{r^2}{r^2 + r_a^2}$

$$\mathcal{E}
ightarrow \mathcal{Q} = \mathcal{E} - rac{L^2}{2r_a^2} \ , \
ho(r)
ightarrow
ho(r) \cdot \left(1 + rac{r^2}{r_a^2}
ight)$$

• Constant orbital anisotropy: $\beta(r) = \beta_c$

$$f(\mathcal{E}, L) = L^{-2\beta_c} \cdot f_{\beta_c}(\mathcal{E})$$

²An&Evans arXiv:astro-ph/0511686v4, Ciotti&Morganti arXiv:1006.2344

DM velocity distribution

Figure: Velocity distributions computed under different assumptions for NFW (left) and Burkert (right) density profiles.

Velocity averaged enhancement and J-factors

The effect of Sommerfeld enhancement can be enraptured in velocity-averaged boost factor:

$$\langle S(v_{\mathrm{rel}})
angle (r) = rac{1}{
ho^2(r)} \int \mathrm{d}^3 v_1 f(r, ec{v}_1) \int \mathrm{d}^3 v_2 \ f(r, ec{v}_2) S(v_{\mathrm{rel}})$$

Corresponding astrophysical *J*-factor can be obtained as follows:

$$J = \int \mathrm{d}\Omega \int \mathrm{d}\ell \;
ho^2(r) \cdot \langle S(v_{\mathrm{rel}})
angle (r)$$

Differential annihilation flux proportional to J-factor:

$$\frac{d\Phi}{dE_{\gamma}} = \frac{1}{8\pi} \frac{\langle \sigma v_{\rm rel} \rangle_0}{m_{\gamma}^2} \frac{dN}{dE_{\gamma}} \cdot J$$

Velocity averaged enhancement

Figure: Velocity averaged enhancement factor ratio as function of r/r_s .

Application: Milky Way satellites

Dwarf spheroidal galaxies (dSph) present one of the prime targets for detection of DM annihilation events:

- DM dominated objects; $10 100 \times$ higher mass to luminosity ratio then in regular galaxies
- Relative proximity of MW dwarfs
- Small DM velocities expected

Strong Fermi-LAT constraint on gamma ray flux

Stellar distribution and velocity dispersion measurements allow for reconstruction of gravitational potential \rightarrow DM density profile

Special thanks to M. Walker for providing us with the pruned data

Application: Bayesian analysis of dSph

Observations provide us with projected surface brightness Σ_{\star} and line-of-sight velocity dispersion σ_{los} .

Using Jeans analysis one can compute the σ_{los} for a given model:

$$\sigma_{\text{los}}^{2}(R) = \frac{1}{\Sigma_{\star}(R)} \int_{R^{2}}^{\infty} \frac{dr^{2}}{\sqrt{r^{2} - R^{2}}} \left(1 - \beta_{\star}(r) \frac{R^{2}}{r^{2}} \right) p_{r \star}(r)$$
$$p_{r \star}(r) = G_{N} \int_{r}^{\infty} dx \, \frac{\rho_{\star}(x) M_{\text{tot}}(x)}{x^{2}} \exp \left[2 \int_{r}^{x} dy \, \frac{\beta_{\star}(y)}{y} \right]$$

Use the following likelihood for radially binned data:

$$\mathcal{L}_{\mathrm{kin}} \equiv \prod_{k=1}^{\mathrm{N}} \frac{1}{\sqrt{2\pi} \, \Delta \sigma_{los\,(k)} \left(\alpha_{(k)}\right)} \exp \left[-\frac{1}{2} \left(\frac{\overline{\sigma}_{los\,(k)} - \sigma_{los} \left(\alpha_{(k)}\right)}{\Delta \sigma_{los\,(k)} \left(\alpha_{(k)}\right)} \right)^{2} \right]$$

Application: Bayesian analysis of dSph

Figure: Draco line-of-sight velocity dispersion data and 68% and 95% credibility intervals for fits using NFW (left) and Burkert (right) profile.

Application: Bayesian analysis of dSph

Application: J-factors

Figure: 68% confidence band for *J*-factors as a function of $\xi = \frac{m_\phi}{\alpha_\chi m_\chi}$ for Draco (left) and Sculptor (right).

Application: J-factors

Figure: J-factors for 8 dSph with the 68% confidence intervals.

Summary

Developed numerical code for computing:

- phase-space distribution of DM for an arbitrary density profile and different orbital anisotropy assumptions
- *J*-factors for arbitrary cross-section velocity dependence based on the phase-space distribution

Bayesian inference of the dSph DM halo parameters.

Careful analysis of *J*-factors in presence of Sommerfeld enhancement

Novel results for various DM orbital anisotropies.

Conclusions and outlook

Conclusions:

- In presence of Sommerfeld enhancement the dSph constraints on $\langle \sigma v \rangle_0$ strengthen by $\mathcal{O}(10^3)$ $\mathcal{O}(10^5)$
- Circularly (radially) biased DM orbits lead enhancement (suppression) of annihilation rate
- Systematic uncertainties due to DM orbital anisotropy at the level of observational uncertainties

Outlook:

- Use detailed phase-space modeling in the context of direct detection experiments
- Obtain conservative (non-parametric) bounds on Milky Way DM density distribution

Non-parametric DM profile from Jean's equation

Jean's equation allows to reconstruct the gravitational potential from the stellar distribution and kinematics:

$$\frac{\mathrm{d}p}{\mathrm{d}r} + \frac{2\beta_{\star}(r)}{r}p(r) = -\rho_{\star}(r)\frac{\mathrm{d}\Phi}{\mathrm{d}r} \quad , \quad p(r) = \rho_{\star}(r)\sigma_{r}^{2}(r)$$

Degeneracy between stellar velocity dispersion anisotropy $\beta_{\star}(r)$ and gravitational potential $\Phi(r)$.

Assuming Plummer stellar profile, isotropy ($\beta_{\star}=0$) and constant $\sigma_{\rm los}(R)\equiv\sigma_{\rm los}$ one finds:

$$ho_{ ext{DM}}(r) = rac{5\sigma_{ ext{los}}^2}{4\pi G} rac{r^2 + 3R_{1/2}^2}{(r^2 + R_{1/2}^2)^2}$$