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Introduction

Indirect detection

Search for DM annihilation/decay
signatures in the sky

o Use galaxies as particle
physics laboratories

@ Strong constraints on
thermal relics

@ Rapid improvements in
observational data
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= Need for accurate modeling of DM related signals
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Introduction

Current constraints
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Figure: Indirect detection constraints on DM annihilation cross-section.
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Project

Project outline - arXiv:1804.05052

Motivation:
@ Generic enhancement of signal in presence of light mediators !
@ Probe effect of DM velocity anisotropy on annihilation signal

@ Era of high precision cosmology and astronomy (Fermi-LAT,
accurate measurements of stellar kinematics, ...)

Outline:
@ Model the DM halo phase-space distribution

@ Study the annihilation rates in presence of Sommerfeld
enhancement

@ Apply the analysis to Milky Way satellites

'Boddy et al. arXiv:1702.00408, Bergstrom et al. arXiv:1712.03188
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Indirect detection

Focus on gamma rays from DM annihilations.

Differential photon flux produced by annihilations:

do 1 dN (7, v f(r,v2)
dQ [ d¢ | 3wy Bv,—=2 . (0w,
dE, ~ 8rdE, /5/ / m, (V)

Non-standard ingredients:
@ Annihilation cross-section boosted by relative velocity
dependent factor - Sommerfeld enhancement:
<0Vrel>0 — <0Vre1>0 : S(Vrel)
o Compute phase-space distribution for various DM density
profiles (NFW, Burkert and non-parametric profile)
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Sommerfeld enhancement

Generic boost of cross-section for non-relativistic particles for
interactions mediated light scalar or vector force mediator ¢ (i.e.
requires £, = my and my < o, my).

Yukawa coupling gives rise to the following potential:

o
V(r)= iTXexp(—mw)

Solve Schrddinger equation to obtain the wave function
distortion due to the mediator exchange:

v2 )
X" (x) + (021 + V(X)> X(x)=0 = S(ve;€) = ‘;((g;)) Vriél
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DM phase-space distribution function

Different isotropic modelings present in literature

@ Maxwell-Boltzmann approximation:

f(r,v) = @Trpg?((rg)p/z P (”‘\gz(f))

e Eddington’s inversion (based on spherical Jeans equation):

1 d [ dav  dp v2

&) =Fmas )y ve—wav © SV~ 3

2

Eddington’s inversion gives unique solution for spherically
symmetric and ergodic (hence isotropic) system.
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Anisotropic DM phase-space distribution function

Velocity anisotropy characterized by: 5(r) =1 — %
Slope-anisotropy inequality?: -‘;:ﬂf > 24
We consider the following possible choices:
e Osipkov-Merritt model: 3(r) = ﬁ
L2 r2
2r; rs

e Constant orbital anisotropy: 5(r) = S

f(E,L) = L7%0 . £5 (&)

2An&Evans arXiv:astro-ph/0511686v4, Ciotti&Morganti arXiv:1006.2344
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DM velocity distribution
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Figure: Velocity distributions computed under different assumptions for
NFW (left) and Burkert (right) density profiles.
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Velocity averaged enhancement and J-factors

The effect of Sommerfeld enhancement can be enraptured in
velocity-averaged boost factor:

1

= Svif(r, vy 3vp F(r, %) S (Ve
(Swa))(r) = 5 [ Puf(r.) [ @vn Flr.8)S ()

Corresponding astrophysical J-factor can be obtained as follows:

J= [ a2 [ ae () (S(ua)) (0

Differential annihilation flux proportional to J-factor:

d® 1 {ove)y dN

dE, “8r m2 dE, 7
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Velocity averaged enhancement
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Figure: Velocity averaged enhancement factor ratio as function of r/rs.
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Application: Milky Way satellites

Dwarf spheroidal galaxies (dSph) present one of the prime targets
for detection of DM annihilation events:

o DM dominated objects; 10 — 100x higher mass to luminosity
ratio then in regular galaxies

@ Relative proximity of MW dwarfs
e Small DM velocities expected

Strong Fermi-LAT constraint on gamma ray flux

Stellar distribution and velocity dispersion measurements allow for
reconstruction of gravitational potential — DM density profile

Special thanks to M. Walker for providing us with the pruned data
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Application: Bayesian analysis of dSph

Observations provide us with projected surface brightness ¥,
and line-of-sight velocity dispersion oy.

Using Jeans analysis one can compute the oy,¢ for a given model:

s (R) :z*tR) /,: rzdr_z R <1 5*(f)lfzz> prs(r)
p,*(r):cN/rm i LMo () [g/rxdyﬁ*(y)]

X y

Use the following likelihood for radially binned data:

2
1 E (Ulos(k) — Olos (Oé(“))

exp | —
A0 o5 (k) (k) 2 Ao jos (k) (k)

Ekm = H \/ﬂ
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Application: Bayesian analysis of dSph
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Figure: Draco line-of-sight velocity dispersion data and 68% and 95%
credibility intervals for fits using NFW (left) and Burkert (right) profile.
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Application: Bayesian analysis of dSph
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Application: J-factors

107 4 1073
107 4
2 2
§ §
S 107 4 =
> >
(] o
) )
9 1020 J Q
= =
1074 — NFW — NFW
—— Burkert —— Burkert
10 —— Non-parametric 0% — Non-parametric
10° 10" 10' 10° 10" 10'
£ 13
. . . m
Figure: 68% confidence band forJ-factors as a function of { = —2— for
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Draco (left) and Sculptor (right).
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Application: J-factors
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Figure: J-factors for 8 dSph with the 68% confidence intervals.
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Summary

Developed numerical code for computing:

o phase-space distribution of DM for an arbitrary density
profile and different orbital anisotropy assumptions

e J-factors for arbitrary cross-section velocity dependence
based on the phase-space distribution

Bayesian inference of the dSph DM halo parameters.

Careful analysis of J-factors in presence of Sommerfeld
enhancement.

Novel results for various DM orbital anisotropies.

Mihael Petac Indirect detection in Milky Way satellites



Summary

Conclusions and outlook

Conclusions:
@ In presence of Sommerfeld enhancement the dSph constraints
on (ov)y strengthen by O(10%) - O(10%)
e Circularly (radially) biased DM orbits lead enhancement
(suppression) of annihilation rate

@ Systematic uncertainties due to DM orbital anisotropy at
the level of observational uncertainties

Outlook:

@ Use detailed phase-space modeling in the context of direct
detection experiments

@ Obtain conservative (non-parametric) bounds on Milky Way
DM density distribution
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Non-parametric DM profile from Jean’s equation

Jean’s equation allows to reconstruct the gravitational potential
from the stellar distribution and kinematics:

P2 ) = (ST L pr) = p()oR()

Degeneracy between stellar velocity dispersion anisotropy (,.(r) and
gravitational potential ®(r).

Assuming Plummer stellar profile, isotropy (5, = 0) and constant
010s(R) = 010 0One finds:

" 502, 17+ 3R,

r) =
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