Perspectives for Future Circular Colliders (1/3)

Lecture 1 : The FCC-ee

- Design study and infrastructure
- Accelerator design and performance
- Interaction region and detectors

FCC-ee/hh

http://cern.ch/fcc-ee

- Physics discovery potential
- Strategic vision for the future

Academic Training 11 Oct 2017

PS

Design Study and Infrastructure

The FCC Design Study

Requested from European Strategy (2013)

- "Ambitious post-LHC accelerator project"
 - Study kicked off in Geneva in Feb. 2014
- International collaboration to study circular colliders (111 institutes)
 - Fitting in a new 100 km infrastructure, in the Geneva area
- Ultimate goal: 100TeV pp collider (FCC-hh)
 - Requires R&D for 16T magnets
 - Defines the infrastructure
- Possible first steps
 - e⁺e⁻ collider (FCC-ee) at the intensity frontier
 - High luminosity, $\sqrt{s} = 90-400 \text{ GeV}$
 - pp collider (HE-LHC) in the LEP/LHC tunnel
 - With FCC-hh technology ($16T \rightarrow 28 \text{ TeV}$)
- Possible add-on
 - e-p option (FCC-eh)

- European Strategy update (2019)
 - Conceptual design report (CDR)
 - Cost review for tunnel and each collider
 - Schedules and operation models

The FCC Home

FCC-ee injector complex

- **Baseline is comprised of:**
 - An e⁻ and e⁺ LINAC (length 250 m @ 25 MV/m) from ~o to 6 GeV
 - An e⁺ production target and an e[±] damping ring (circumference 250 m)
 - A pre-booster ring (from 6 to 20 GeV) probably in the SPS tunnel
 - A booster ring (from 20 GeV to the full FCC-ee energy), for continuous top-up injection

(Draft) Schedule considerations

Compare possible first steps (FCC-ee and HE-LHC)

- Personal remarks
 - Why do we have to wait for two years after the project decision ? FCC-ee needs no 16T magnets
 - Why waiting for 5.5 years before starting the installation of FCC-ee ring?
 - Was done in parallel with Civil Engineering for LEP
 - FCC-ee can start physics immediately after the end of HL-LHC no physics gap at CERN
 - At least six years without physics with the HE-LHC
 - FCC-ee buys time for the R&D, prototyping, and production of 16T magnets towards FCC-hh

Accelerator design and performance

FCC-ee centre-of-mass energies

Reminder: European Strategy statement (2013)

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

• Other heavy particles: the Z (91.2 GeV) & W (80.4 GeV) bosons, the top quark (173.3 GeV)

Lighter fermions (e.g., b quark, τ lepton) studied with Z decays

FCC-ee centre-of-mass energies, cont'd

Reminder: European Strategy statement (2013)

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

• The gluon can be studied with Higgs decays (BR ~ 10%)

FCC-ee baseline luminosities

Reminder: European Strategy statement (2013)

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

Ultimate precision with

- 100 000 Z / second (!)
 - 1Z / second at LEP
 - 10 000 W / hour
 - 20 000 W in 5 years at LEP
- 1 500 Higgs bosons / day
 - 10-20 times more than ILC
- 1 500 top quarks / day

... in each detector

The FCC-ee unique discovery potential is multiplied by the presence of the four heavy particles of the standard model in its energy range

FCC-ee energy upgrade

Reminder: European Strategy statement (2013)

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

- In e⁺e⁻ colliders, an energy upgrade is mostly relevant for
 - The production and study of (a) putative new particle(s) at high mass
 - ➡ The domain covered by CLIC (0.4 3 TeV) is being explored by the LHC

CLIC becomes an interesting option to consider if a new particle produced in e⁺e⁻ collisions is discovered / hinted at in this range

- A much bigger energy step is needed to go further: FCC-hh better suited
- The measurement of the ttH and HHH(H) couplings
 - In combination with FCC-ee, the FCC-hh does better than linear colliders
- The energy upgrade of the FCC-ee, i.e. FCC-hh, is the most ambitious scientifically
 - The FCC-ee is not only complementary to, but also synergetic with, FCC-hh
- Conclusion of the previous four slides: the FCC-ee is <u>the</u> e⁺e⁻ collider that complies best with the 2013 European Strategy statement

Q: Why is luminosity so much higher than LEP?

- A: Design inspired by B factories
 - Fix 100 MW Synchrotron Radiation (SR) at all energies
 - Larger beam currents possible at lower energies
 - Two separate rings for e+ and e-
 - Many bunches to distribute the beam currents, without parasitic collisions
 - Larger ring (×4)
 - $P_{SR} \alpha E^{4}/\rho$
 - Asymmetric IP
 - SR@175 GeV ~ LEP
 - Strong vertical focusing
 - β* ~ O(1 mm)
 - Crab-waisted crossing
 - Optimize colliding area en
 - Larger energy acceptance
 - Beamstrahlung limit
 - Continuous injection
 - Better efficiency
 - Smaller asymmetry

Ζ W H(ZH) ttbar beam energy [GeV] 45.6 80 120 182.5 arc cell optics 60/60 90/90 90/90 90/90 emittance hor/vert [nm]/[pm] 0.27/1.0 0.28/1.0 0.63/1.3 1.45/2.7 β* horiz/vertical [m]/[mm] 0.15/.8 0.2/1 0.3/1 1/2 SR energy loss / turn (GeV) 0.036 9.21 0.34 1.72 total RF voltage [GV] 0.10 0.44 2.0 10.9 energy acceptance [%] 1.3 1.3 1.5 2.5 energy spread (SR / BS) [%] 0.038/0.132 0.066 / 0.153 0.099/0.151 0.15/0.20 bunch length (SR / BS) [mm] 3.5/12.1 3.3/7.65 3.15/4.9 2.5/3.3 bunch intensity [10¹¹] 2.8 1.5 1.5 1.7 no. of bunches / beam 16640 2000 393 39 beam current [mA] 1390 147 29 5.4 SR total power [MW] 100 100 100 100 luminosity [10³⁴ cm⁻²s⁻¹] 7.8 230 32 1.5 luminosity lifetime [min] 42 70 50 44 allowable asymmetry [%] ±5 ±3 ±3 ±3

Patrick Janot

Q: Aren't the machine parameters stretched ?

- A: Challenging, but ...
 - Now backed up by a very solid design study (2014-2017)
 - Many considerations underwent complete/multi-turn/independent simulations
 - Beam-beam instabilities
 - Bootstrapping for first full injection
 - ➡ Flip-flop effect
 - Off-momentum dynamic aperture
 - Working-point optimization
 - ► Crab waist strength optimized for each √s
 - Beamstrahlung and beam lifetime
 - Injector cycles and minimum sustainable lifetime
 - ➡ Etc.

Example: Suppression of a coherent instability in the x-z plane

- By reducing β_x^* by a factor 3
- By increasing the momentum compaction factor by a factor 2

Patrick Janot

Academic Training 11 Oct 2017

Q: Aren't the machine parameters stretched ?

- A: Challenging, but ...
 - Now backed up by a very solid design study (2014-2017)
 - Most parameters are being commissioned at SuperKEKB

Commissioning Phase 2 starting in Oct. 2017 Phase 3 starting in fall 2018 Some SuperKEKB parameters : β^{*}_v : 270 μ**m** FCC-ee (Z) : 800 um $\varepsilon_v/\varepsilon_x$: 0.25% FCC-ee (tt) : 0.2% e⁺ production rate : 2.5 × 10¹² / s FCC-ee (Z): $0.4 - 2.5 \times 10^{12}$ / s Beam current : 3.6 A FCC-ee (Z) : 1.4 A Off-momentum acceptance : ±1.5% FCC-ee (tt) : ±2.5% Luminosity lifetime : 2.5 minutes FCC-ee (tt) : 40 minutes Crossing angle : 83 mrad FCC-ee : 30 mrad Centre-of-mass energy: ~10 GeV FCC-ee : 88 - 365 GeV (*) (*) See next slide

The SCRF system: optimization and staging

- Very broad range of operation parameters
 - SR energy loss from 36 MeV to 9.21 GeV
 - Total voltage from 0.1 (Z) to 11 GV (tt)
 - Total current from 5.4 mA (tt) to 3.9 A (Z)
 - Aim at acceleration efficiency and cost reduction at high energy
 - Aim at cell shape and impedance optimization against HOMs at high current
 - Fast acceleration from 20 to 45 182.5 GeV in the booster
- Solution : Operation staging

(single (multi (multi cells) cells) cells)

• Start with 400 MHz Nb/Cu cavities @ 4.5K for the Z, WW, and Higgs operation modes

Power consumption

- **D** The RF system needs to compensate for 100 MW SR losses
 - Corresponds to 200 MW electric power with 50% RF power sources (klystrons)
 - Klystron efficiency was ~55% at LEP2
 - Recent (2015) breakthroughs in klystron design promise 90% efficiency

• Assume 85% will be achieved and take 10 – 20% margins

lepton collider	Z	W	ZH	$t\bar{t}$	LEP2
luminosity / interaction point $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	207 90	19	5	1.3	0.012
total RF power [MW]	163	163	145	145	42
collider cryogenics [MW]	3 2	5	23	39	18
collider magnets [MW]	3	10	24	50	16
booster RF & cryogenics [MW]	4	4	6	7	N/A
booster magnets [MW]	0	1	2	5	N/A
pre-injector complex [MW]	10	10	10	10	10
physics detectors (2) [MW]	10	10	10	10	9
cooling & ventilation [MW]	47	49	52	62	16
general services [MW]	36	36	36	36	9
total electrical power [MW]	276 ~275	~288	~ 308	~364	~120

• For comparison

- LHC Run1: 210 MW, HL-LHC: 260 MW, FCC-hh: ~500 MW
- CLIC: 250 MW (at 380 GeV) to 580 MW (at 3 TeV)

Interaction region and detectors

Requirements and constraints

D Maximize luminosity

- Extremely small beta functions at the IP
 - $\beta_{y}^{*} = 0.8 \text{ to 2 mm}$ (LEP2: 50 mm)
- Very low beam emittances (and ratio)
 - ε_x = 0.27 to 1.45 nm (LEP2: 22 nm)
 - ε_v = 1 to 2.7 pm (LEP2: 250 pm)
- Crab waist optics
 - Crossing angle = 30 mrad (LEP2: 0 mrad)
- Calls for a focussing system (quadrupoles, sextupoles) close to the IP
 - L* = 2.2 m chosen for FCC-ee : final focus quads inside the detector

Requirements and constraints, cont'd

- **D** Minimize adverse effects from the detector
 - Emittance blow-up from detector magnetic field (beam crossing at angle)
 - Requires a compensating solenoid even closer to the IP
 - Which in turn limits the detector magnetic field to 2T
 - And a magnetic shielding around the final focus quads

- Not much room left for the luminosity counter (with low-angle Bhabha e⁺e⁻→ e⁺e⁻)
 - ➡ Front face at 1.2 m from the IP (typically twice closer to IP than at LEP)

Requirements and constraints, cont'd

- Minimize adverse effects on the detector
 - Synchrotron radiation still produces important backgrounds in the detector inner layers
 - Reduced to adequate levels with beam pipe shielding

Detector occupancy

- Dominant backgrounds
 - Synchrotron radiation
 - Interactions between γs from beamstrahlung
 - $\gamma\gamma \rightarrow e^+e^-$ (#particles / BX: see figure)
 - γγ → hadrons (0.005 event / BX)

Effects on first detector layer

- Reasonable assumptions
 - Silicon pixel detector
 - Radius : 17 mm
 - Pixel pitch : 25×25 μm²
 - Safety factor : 3
- Full simulation (GuineaPig, GEANT)
 - Estimated occupancy ~ 5×10⁻⁴ / BX
 - Both at the top and the Z
- Needs for fast electronics ?
 - At the Z, one bunch crossing every 20 ns
 - Keep occupancy below 1% with electronics integration time < 0.4 μ s

The luminosity monitor

- Design largely inspired from FCAL study for linear colliders
 - Same geometry works: "just" make it smaller and closer to the IP
 - Centred around the outgoing beam (measures the outgoing particle deviation)
- Length 10 cm (1.05 to 1.15m) + 160 Radius from 5.4 to 14.2 cm 142 mm + 140 cables + cooling 132 mm electronics + assembly $30 \text{ layers } (1X_0) \text{ of } 3.5 \text{mm W} + 1 \text{mm Si}$ 120 + 112 mm 85 mrad 100 32 × 32 Si pads in (r,ϕ) : 3×10⁴ channels + 80 65 mrad Mechanical support on FF system + 60 40 Total Acceptance: 45-95 mrad 20 + 0 Loose acceptance: 63-83 mrad + -20Tight acceptance: 68-78 mrad + -40 $\sigma(e^+e^-\rightarrow e^+e^-) = 6-13 \text{ nb}$ (45, 60) mrad + -60(51, 66) mrad -80 -100Statistical precision on luminosity: (94, 109) mrad -120Few 10⁻⁵ at the Z pole Few 10⁻⁴ at the tt threshold -140(119, 134) mrad (135, 150) mrad (126, 141) mrad -160
 - + Positioning with 1μm precision (!)

Patrick Janot

Academic Training 11 Oct 2017)20 1040 1060 1080

100 120 140 160

1100 1120

1140 1160 1180 1200

The central detector

- With 100,000 Z / second / detector, expect more than 2×10¹² Z / year
 - Statistical accuracies on cross sections, asymmetries, etc. of 10-5 or better
 - Experimental uncertainties must be controlled at this level too
 - Demands state-of-the-art performance for all detector subsystems
- Vertex detector
 - Excellent b- and c-tagging capabilities : few μm precision for charged particle origin
 - Small pitch, thin layers, limited cooling, first layer as close as possible from IP
- **D** Tracker
 - State-of-the-art momentum and angular resolution for charged particles.
 - Typically $\sigma(1/p) \sim 2 3 \times 10^{-5} \text{ GeV}^{-1}$ and $\sigma(\theta, \phi) \sim 0.1 \text{ mrad for 45 GeV muons}$
 - Almost transparent to particles (as little material as possible)
 - Particle ID is a valuable additional ability
- Calorimeters
 - Good particle-flow capabilities and energy resolution
 - Transverse segmentation ~ cm : separate clusters from different particles in jets
 - Longitudinal segmentation : identify or even track electron/photon and hadron showers
 - $\sigma(E) \sim 10\% \sqrt{E}$ for e, γ and $\sim 30\% \sqrt{E}$ for pions
 - Inside solenoid coil, or alternatively, extremely thin coil
- **Instrumented return yoke OR large tracking volume outside the calorimeters**
 - Muon identification and long-lived particle reconstruction

Baseline detector design #1 : All Silicon

• The CLIC detector is being adapted for FCC-ee

- Changeover mostly straightforward
 - Smaller beam pipe radius (15mm)
 - Inner pixel layer closer to IP
 - Not instrumented from o to 150 mrad
 - Smaller B field
 - Larger tracker radius $(1.5 \rightarrow 2.2m)$
 - Smaller energies
 - Thinner HCAL (4.2m \rightarrow 3.7m)
 - Continuous operation
 - Increased cooling
 - Thicker pixel/tracker layers
 - Reduced calorimeter granularity

Performance being revisited

• e.g., Pixel detector

Baseline detector design #2 : IDEA

- **New IDEA**, a detector specifically designed for FCC-ee
 - Vertex Si detector
 - With light MAPS technology
 - 7 layers, up to 35cm radius
 - Ultra light wire drift chamber
 - 4m long, 2 m radius, 0.4% X_o
 - 112 layers with Particle ID
 - One Si layer for acceptance determination
 - Precise tracking with large lever arm
 - Barrel and end-caps
 - Ultra-thin 20-30cm solenoid (2T)
 - Acts as preshower (1X_o)
 - Or 1X_o Pb if magnet outside calo
 - Two μ-RWell layers
 - Active preshower measurement
 - Dual readout fibre calorimeter
 - 2m thick, longitudinal segmentation
 - Instrumented return yoke

Design, R&D, test beam, performance studies have started and will be continued during the FCC-ee technical design phase. Performance tailored for FCC-ee physics.

FCC-ee physics discovery potential

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

The FCC-ee discovery potential in a nutshell

- EXPLORE the 10-100 TeV energy scale
 - With precision measurements of the properties of the Z, W, Higgs, and top particles
 - 20-50 fold improved precision on ALL electroweak observables
 - m_Z , Γ_Z , m_W , m_{top} , $\sin^2 \theta_w^{eff}$, R_b , α_{QED} (m_z), α_s (m_z), top EW couplings ...
 - 10 fold more precise and model-independent Higgs couplings measurements
- DISCOVER that the Standard Model does not fit

 - Understand the underlying physics through effects via loops
- DISCOVER a violation of flavour conservation
 - Examples: $Z \rightarrow \tau \mu$ in 5×10¹² Z decays; or t \rightarrow cZ, cH at \sqrt{s} = 240 or 350 GeV
 - Also a lot of flavour physics in 10¹² bb events, e.g., with B° \rightarrow K^{*0} $\tau^+\tau^-$ or B_S \rightarrow $\tau^+\tau^-$
- DISCOVER dark matter as invisible decays of Higgs or Z
- DISCOVER very weakly coupled particles in the 5-100 GeV mass range
 - Such as right-handed neutrinos, dark photons, ...
 - May help understand dark matter, universe baryon asymmetry, neutrino masses

Today, we do not know how nature will surprise us: other things may come up with FCC-ee

FCC-hh

Precision \Leftrightarrow **Discovery** !

Electroweak observables are sensitive to heavy particles in "loops"

- With precise measurements of the Z mass, Z width, and Weinberg angle [+ $\alpha_{QED}(m_Z)$]
 - LEP was able to predict m_{top} and m_{W} (with uncertainty for unknown m_{H})
- With the discovery of the top (Tevatron) at the right mass
 - LEP was able to predict m_H
- With the discovery of the Higgs (LHC) at the right mass
 - LEP was able to improve the m_w prediction (and measured m_w as well)

Precision ⇔ Discovery !, cont'd

• With m_{top}, m_H and m_w known, the standard model has nowhere to go

- The FCC-ee will significantly improve precision on all fronts
 - More precise measurements become sensitive to other (heavier) particles in the loops
 - Theoretical calculations need to be brought to higher orders (more loops)
 - If one ingredient is missing, the sensitivity to new physics drops / vanishes
 - → Full programme (from the Z pole to above the top threshold) well justified

Luminosity goals and operation model

h	e FCC-ee physics goals require at least
	150 ab ⁻¹ at and around the Z pole (√s~91.2 GeV)
	10 ab ⁻¹ at the WW threshold (√s~161 GeV)
	5 ab ⁻¹ at the HZ cross section maximum (\sqrt{s} ~240 GeV)
	0.2 ab ⁻¹ at the top threshold (\sqrt{s} ~350 GeV) and 1.5 ab ⁻¹ above (\sqrt{s} ~365 GeV)

- Operation model (with 10% safety margin) with two IPs
 - 200 scheduled physics days per year (7 months 13 days of MD / stops)
 - Hübner factor ~ 0.75 (lower than achieved with KEKB top-up injection, ~0.8)
 - Half the design luminosity in the first two years of Z operation (~LEP1)
 - Machine configuration between WPs changed during Winter shutdowns (3 months/year)

Working point	Z, years 1-2	Z, later	ww	HZ	t t threshold	365 GeV
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	13	7	1.6	1.3
Lumi/year (2 IP)	26 ab-1	52 ab-1	7.8 ab-1	1.8 ab-1	0.4 ab-1	0.35 ab-1
Physics goal	150		10	5	0.2	1.5
Run time (year)	2	2	1	3	0.5	4

Total running time : 12-13 years (~ LEP)

Patrick Janot

Т

Longer shutdown: install 74 RF CMs LEP Record: 32 in one shutdown !

5×10¹² Z

10⁸ WW

10⁶ HZ

10⁶ tt

Electroweak precision measurements

• The dominant experimental uncertainties come from the beam energy knowledge

Beam energy calibration

- **a** Achieve / measure beam transverse polarization
 - For a few 10's of non-colliding "monitoring" bunches out of 16000 (Z) or 2000 (W)
 - Excellent polarization level at the Z
- Enough polarization at the W (~LEP at the Z)

- Need wigglers to have polarization fast enough during physics run
- "Continuous" beam energy calibration with resonant depolarization
 - See backup for an explanation of "resonant depolarization"
 - A unique feature of circular e⁺e⁻ colliders !
 - Demonstrated (and used) at LEP, outside physics runs (extrapolation error 2 MeV)
 - Target precision at FCC-ee is \pm 100 keV on \sqrt{s} at the Z pole and WW threshold
 - Crucial for sensitivity to new physics of the electroweak measurements

Summary of precisions achievable at FCC-ee

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Γ _z (MeV)	Lineshape	2495.2 ± 2.3	0.008 < 0.1		QED corr.
R _i	Peak	20.767 ± 0.025	20.767 ± 0.025 0.0001 <		Statistics
R _b	Peak	0.21629 ± 0.00066	0.000003	< 0.00006	g → bb
N _v	Peak	2.984 ± 0.008	0.00004 < 0.004		Lumi meast
$sin^2 \theta_w^{eff}$	sin ² θ _w ^{eff} $A_{FB}^{\mu\mu}$ (peak) 0.23148		0.000003	0.000006	Beam energy
$1/\alpha_{QED}(m_Z)$	$1/\alpha_{QED}(m_z)$ $A_{FB}^{\mu\mu}$ (off-peak) 128.952		0.004	< 0.004	QED corr.
α _s (m _z) R ₁		0.1190 ± 0.0025	0.00001	0.0001	New Physics
m _w (MeV)	Threshold scan	80385 ± 15	0.3	< 0.5	EW Corr.
N _v	e⁺e⁻→γΖ, Ζ→νν, II	2.92 ± 0.05	0.001	< 0.001	?
$\alpha_{s}(m_{W})$ $B_{had} = (\Gamma_{had}/\Gamma_{tot})_{W}$		B _{had} = 67.41 ± 0.27	0.00018	< 0.0001	CKM Matrix
m _{top} (MeV) Threshold scan		173340 ± 760 ± 500	10 20		QCD corr.
Γ _{top} (MeV) Threshold scan		?	25 ?		$\alpha_{s}(m_{Z})$
λ _{top}	••• Threshold scan $\mu = 1.2 \pm 0.4$		15%	?	$\alpha_{s}(m_{Z})$

11 Oct 2017

36

The FCC-ee as a Higgs factory : √s = 240 GeV

- Model-independent precision measurements
 - A Higgs boson is tagged by a Z and the recoil mass

$$m_H^2 = s + m_Z^2 - 2\sqrt{s}(E_+ + E_-)$$

- Measure $\sigma(e^+e^- \rightarrow HZ)$
- Deduce g_{HZZ} coupling
- Infer $\Gamma(H \rightarrow ZZ)$
- Select events with H→ZZ^{*}
- Measure $\sigma(e^+e^- \rightarrow HZ, with H \rightarrow ZZ^*)$

$$\sigma(e^+e^- \to HZ \to ZZZ) = \sigma(e^+e^- \to HZ) \times \frac{\Gamma(H \to ZZ)}{\Gamma_H}$$

- Deduce the total Higgs boson width $\Gamma_{\rm H}$
- Select events with H \rightarrow bb, cc, gg, WW, $\tau\tau$, $\gamma\gamma$, $\mu\mu$, Z γ , ...
- Deduce g_{Hbb} , g_{Hcc} , g_{Hgg} , g_{Hww} , $g_{H\tau\tau}$, $g_{H\gamma\gamma}$, $g_{H\mu\mu}$, $g_{HZ\gamma}$, ...
- Select events with H → "nothing"
- Deduce $\Gamma(H \rightarrow invisible)$
- With 10⁶ HZ events, expect precisions ranging from 0.1% to 1%

Expected precisions and synergies

• FCC-ee precisions one order of magnitude better than HL-LHC

- FCC-ee precisions are model-independent
- FCC-eh precisions assume standard model for g_{HZZ} , g_{HWW} , and Γ_{H} (!)
- + FCC-hh precisions enjoy g_{HZZ} , g_{HWW} and Γ_{H} as measured by FCC-ee
 - For g_{Htt}, FCC-hh also benefits from the g_{Ztt} measurement from FCC-ee

New-physics model building / testing

- Pattern of deviations will point to specific new physics
 - Example: correlated effect on g_{HZZ} and g_{Hbb} from 4D-Composite Higgs models

- All other couplings affected in a similar manner
- FCC-ee sensitivity : f > 4-5 TeV, just from Higgs measurements
 - Expect deviations from other sectors as well (next slides)

New-physics model building / testing, cont'd

- **a** 4D-Higgs composite models also affect EW couplings
 - Presence of heavy Z' and modified Ztt / Zee couplings
 - Modify angular and energy distributions of t decay products (l, b)
 - Best precision on Ztt / γ tt couplings at $\sqrt{s} = 365$ GeV (!)

e

Ζ'/ΖΙγ

- Also modify cross sections and asymmetries for e⁺e⁻ $\rightarrow \mu^+\mu^-$ at all \sqrt{s}
- Data do not fit the standard model (by many standard deviations)
 - FCC-ee precision allows the model to be fully characterized up to f ~ 5 TeV
 - (Work in progress)

Flavour physics

- **Current tensions** (several 2-3σ deviations) of LHCb data with SM predictions
 - In particular, lepton flavour universality is challenged in b \rightarrow s $\ell^+\ell^-$ transitions
 - For example, the rates of $B^o(B^+) \rightarrow K^{*o}(K^+) \ell^+ \ell^-$ are different for $\ell = e$ and $\ell = \mu$
 - Differences are also observed in the lepton angular distributions
 - This effect, if real, could be enhanced for $\ell = \tau$, in $B \rightarrow K^{(*)} \tau^+ \tau^-$
 - Extremely challenging in hadron colliders
 - With $10^{12} \text{ Z} \rightarrow b\bar{b}$, FCC-ee is beyond any foreseeable competition
 - Decay can be fully reconstructed
 - ➡ Full angular analysis possible
- Also sensitive to new physics: $B_S \rightarrow \mu^+ \mu^-$
 - None found yet at the LHC (~50 events)

 $BR(B_s^0 \to \mu^+\mu^-) = (3.0 \pm 0.6 \, {}^{+0.3}_{-0.2}) \times 10^{-9}$ ~SM

- Expect a few 1000's by the end of LHC
- $B_S \rightarrow \tau^+ \tau^-$ is 250 times more abundant
 - But almost hopeless at the LHC
- Again, FCC-ee is beyond any foreseeable competition
 - Several 100,000 events expected reconstruction efficiency under study

Discovery of very-weakly-coupled particles

- "With the Higgs discovery, the standard model is complete"
 - Not quite true : three right-handed neutrinos are missing ٠

- Could explain everything: Dark matter, Baryon asymmetry, Neutrino masses
- Searched for in very rare $Z \rightarrow \nu N_{2,3}$ decays •

• Followed by
$$N_{2,3} \rightarrow W^* \ell$$
 or $Z^* \nu$

aluon

hoton

Higgs

The FCC-ee discovery potential in a nutshell

- **EXPLORE the 10-100 TeV energy scale**
 - With precision measurements of the properties of the Z, W, Higgs, and top particles
 - 20-50 fold improved precision on ALL electroweak observables
 - 100 keV for m_Z , 500 keV for m_W , 20 MeV for m_{top} , 3×10⁻⁵ for $\alpha_{QED}(m_Z)$, 6×10⁻⁶ for sin² θ_w^{eff}
 - 10 fold more precise and model-independent Higgs couplings measurements
- DISCOVER that the Standard Model does not fit
 - Then extra weakly-coupled and Higgs-coupled particles exist Synergy with
 - Understand the underlying physics through effects via loops
- DISCOVER a violation of flavour conservation
 - Examples: $Z \rightarrow \tau \mu$ in 5×10¹² Z decays; or t \rightarrow cZ, cH at \sqrt{s} = 240 or 350 GeV
 - Also a lot of flavour physics in 10¹² $b\bar{b}$ events, e.g., with $B^{\circ} \rightarrow K^{*0}\tau^{+}\tau^{-}$ or $B_{s} \rightarrow \tau^{+}\tau^{-}$
- DISCOVER dark matter as invisible decays of Higgs or Z
- DISCOVER very weakly coupled particles in the 5-100 GeV mass range
 - Such as right-handed neutrinos, dark photons, ...
 - May help understand dark matter, universe baryon asymmetry, neutrino masses

Today, we do not know how nature will surprise us: other things may come up with FCC-ee

FCC-hh

Strategic vision for the future (Personal concluding remarks)

What have we learnt since ESU 2013?

• LHC

- The Run2 at $\sqrt{s=13}$ TeV is proceeding extremely well already 100 fb⁻¹ since 2010
- The experiments perform equally well, see e.g., EPS-HEP2017 in Venice
- No convincing hints of strong deviations from standard model just as yet
 - Air is getting thinner and thinner for new physics in the TeV region
- HL-LHC has become a project: may occupy CERN until 2039, if nothing else come up
- Policy / Politics
 - Support to HL-LHC from Europe, US, Japan
 - The FCC design study took place, with financial support
 - All configurations studied (ee, hh, eh) with schedule and funding profile by 2018
 - The ILC baseline is now limited to $\sqrt{s} = 250$ GeV instead of 500 GeV (cost and physics)
 - The CLIC first stage is now reduced to $\sqrt{s} = 380$ GeV instead of 500 GeV (physics)
 - China has come up with a conceptual design study of a circular machine
 - Largely "inspired" from FCC
 - Current focus on a 90-250 GeV e⁺e[−] machine, followed by a 70 TeV pp collider
 - CERN's new alternative: HE-LHC@28 TeV, with FCC-hh magnets in the LHC tunnel
 - Note: a high-lumi 90-250 GeV e⁺e⁻ machine (LEP₃) could use the same tunnel
 - ► Proposed in 2011, cost effective, but not advertized ("would undercut the FCC-ee")

What will we know by ESU 2019?

- **If new physics is found by the end of LHC Run2**
 - It will hopefully point to the best new accelerator to build
 - Will in turn make it easier to get financial/political/societal support
 - This hypothesis is, unfortunately, getting less and less likely
- Much greater challenge if no new physics is convincingly found
 - Cannot continue indefinitely with R&D towards all possible future facilities
 - A choice will have to be made in 2019-2020
- Physics absolutely need an e^+e^- EW factory with $90 < \sqrt{s} < 400$ GeV
 - Four e⁺e⁻ collider studies on the planet (ILC, CLIC, CEPC, FCC) in the energy range !
 - Today's lecture hinted at what could be the best choice
 - FCC covers the whole range (unlike ILC, CLIC, CEPC): Z, W, H, and top. with the highest luminosities (20×ILC at 250 GeV, 10⁵×LEP at 90 GeV) with unique discovery potential to very high scale and very small couplings is technologically ready today – future R&D can only improve the case seems to be (close to) affordable within CERN constant budget
 - Much harder to make a convincing physics case for e^+e^- colliders with $\sqrt{s} > 400$ GeV
 - Exploration of the energy frontier best done with a hadron collider (e.g., FCC-hh)

(Even more personal) remarks : HE-LHC vs FCC-ee

- HE-LHC : the best first step for FCC-hh ?
 - Similar remark for HE-LHC wrt FCC to that made for LEP3 wrt FCC-ee
 - The HE-LHC does strategically undercut the long-term plan to reach 100 TeV
 - **1.** The HE-LHC in direct competition with FCC-ee (in budget, in time)
 - 2. The HE-LHC leaves a gap in physics at CERN for at least 6-7 years
 - 3. The choice of HE-LHC leaves CERN vulnerable to the possibility that a lepton collider is built elsewhere with worse performance, but still sufficient to render the case for FCC-ee more difficult to make
 - 4. The HE-LHC, similarly, also weakens the case for FCC-hh in two ways: it reduces the increment in centre-of-mass energy, and no more FCC-ee (see below)
 - 5. The HE-LHC keeps physicists doing physics with the same techniques for many many years (especially after 30 years of LHC and HL-LHC, and before 30 years of FCC-hh): it may not be a very healthy plan to maintain CERN attractiveness ?

• FCC-ee : the best first step for FCC-hh ?

- It is complementary and synergetic on many fronts [also turns 2., 3., 4., 5. into advantages]
 - 1. It gives a preview of the new physics to be searched for, up to a scale of 100 TeV
 - 2. It significantly reduces systematic uncertainties on many FCC-hh measurements
 - 3. It provides handles to understand the underlying theory upon particle discovery at the FCC-hh
 - 4. It provides the infrastructure (tunnel, experimental shafts, cryogenics, ...) at reasonable cost
 - 5. It buys time to develop 16T (or why not? 20T) magnets for FCC-hh at lower cost
 - 6. It can even be a springboard for a FCC- $\mu\mu$ (circular $\mu^+\mu^-$ collider with $\sqrt{s} = 6$, 28, or 100 TeV?)

A successful model !

• Back to the future ...

 $\frac{PHYSICS WITH VERY HIGH ENERGY}{e^+e^- COLLIDING BEAMS}$

L. Camilleri, D. Cundy, P. Darriulat, J. Ellis, J. Field,
H. Fischer, E. Gabathuler, M.K. Gaillard, H. Hoffmann,
K. Johnsen, E. Keil, F. Palmonari, G. Preparata, B. Richter,
C. Rubbia, J. Steinberger, B. Wiik, W. Willis and K. Winter

ABSTRACT

This report consists of a collection of documents produced by a Study Group on Large Electron-Positron Storage Rings (LEP). The reactions of

• Did these people know that we would be running HL-LHC in the same tunnel more than 60 years later ?

LARGE HADRON COLLIDER IN THE LEP TUNNEL

Let's not be shy ! The FCCs are shaping up as the most natural, complete,

and powerful aspiration of HEP for its long-term future

Backup slides

LEP civil engineering

HL-LHC schedule (April 2017)

Patrick Janot

Energy calibration with resonant depolarization

- **Reminder: Measurement of the beam energy at LEP**
 - Ultra-precise measurement unique to circular colliders

Patrick Janot

Energy calibration with resonant depolarization

- **The spin precesses around B with a frequency proportional to B (Larmor precession)**
 - + Hence, the number of revolutions v_s for each LEP turn is proportional to BL (or $\int Bdl$)

- LEP was colliding 4 bunches of e⁺ and e[−]
 - Specific calibration runs were needed: extrapolation error ~ 2.2 MeV
- FCC-ee will have 10,000's of bunches.
 - Use ~100 "single" bunches to measure E_{BEAM} with resonant depolarization
 - Each measurement gives 100 keV precision, with no extrapolation uncertainty

Theoretical limitations

- **D** SM predictions (using other inputs)
 - After LEP

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \pm 0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{\text{theo}}$$

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta\alpha_{\text{had}}} \\ \pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}}.$$

- Requires additional measurements
 - Dominant uncertainties explain why we want high Z statistics, and ttbar running

Theoretical limitations

- SM predictions (using other inputs)
 - After FCC-ee

$$M_W = 80.3593 \pm 0.0002 \text{ m}_t \pm 0.0001 \text{ }_{I_Z} \pm 0.0004 \text{ }_{\Delta\alpha_{\text{had}}}$$

0.0005
$$\pm 0.0001 \text{ }_{\alpha_S} \pm 0.0000 \text{ }_{M_H} \pm 0.0040_{\text{theo}}$$

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.0000015 \ _{m_t} \pm 0.000001 \ _{M_Z} \pm 0.000006 \ _{\Delta \alpha_{\text{had}}}$$

0.000006 $\pm 0.0000014 \ _{\alpha_S} \pm 0.000000 \ _{M_H} \pm 0.000047_{\text{theo}}$

- Requires additional measurements
 - Dominant uncertainties explain why we want high Z statistics, and ttbar running
- Experimental errors will be 20-50 times smaller than present errors
 - BUT also 10-30 times smaller than present level of theory uncertainties !
- Will require significant theoretical effort for a 10-fold improvement
 - Need for multi-loop (3 or more) calculations in the future
 - Suggest including manpower for theory calculations in the project cost

Theoretical limitations: work has started

Theoretical uncertainties for electroweak and Higgs-boson precision measurements at the FCC-ee

Conveners: A. Freitas¹, S. Heinemeyer², Contributors: M. Beneke³, A. Blondel⁴, A. Hoang⁵, P. Janot⁶, J. Reuter⁷, C. Schwinn⁸, and S. Weinzierl⁹

Intrinsic uncertainties: \Rightarrow always a limiting factor!

Quantity	FCC-ee	Curi	rent intrinsic unc.	Projected unc.
M_W [MeV]	1	4	$(\alpha^3, \alpha^2 \alpha_s)$	1
$\sin^2 \theta_{\rm eff}^{\ell}$ [10 ⁻⁵]	0.6	4.5	$(\alpha^3, \alpha^2 \alpha_s)$	1.5
Γ_Z [MeV]	0.1	0.5	$(\alpha_{\text{bos}}^2, \alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$	0.2
$R_b \ [10^{-5}]$	6	15	$(\alpha_{\text{bos}}^2, \alpha^3, \alpha^2 \alpha_s)$	7
R_l [10 ⁻³]	1	5	$(\alpha_{\text{bos}}^2, \alpha^3, \alpha^2 \alpha_s)$	1.5

Look into the future. Bookkeeping with three loops

·		_			
$Z \rightarrow b\bar{b}$					
Number of	1 loop	2 loops	3 loops		
topologies	1	$14 \rightarrow^{\mathbf{A}} 7 \rightarrow^{\mathbf{B}} 5$	$211 \rightarrow^{\mathbf{A}} 84 \rightarrow^{\mathbf{B}} 50$		
Number of diagrams	15	2383→ ^{A,B} 1114	490387→ ^{A,B} 120187		
Fermionic loops	0	371	116091		
Bosonic loops	15	2012	374296		
Planar	1T/15D	13T/2250D	186T/426753D		
Non-planar	0	1T/133D	25T/63634D		
	Z -	$\rightarrow e^+e^-,\ldots$			
Number of	1 loop	2 loops	3 loops		
topologies	1	$14 \rightarrow^{\mathbf{A}} 7 \rightarrow^{\mathbf{B}} 5$	$211 ightarrow {f A}$ 84 $ ightarrow {f B}{f 50}$		
Number of diagrams	14	2012→ ^{A,B} 880	$397690 ightarrow \mathbf{A,B} \ 91271$		
Fermionic loops	0	301	92397		
Bosonic loops	14	1711	305293		
Planar	1	13	186		
Non-planar	0	1	25		

Genuine virtual loops (aITALC, qgraf, FeynArts).

(A) - no tadpoles, no product of lower loops, (B) - symmetry included $_{19/46}$

Mini workshop: Precision EW and QCD calculations for the FCC studies: methods and techniques

12-13 January 2018

https://indico.cern.ch/event/669224/

Towards FCC-μμ?

- Why high energy muon colliders ?
 - Muons are leptons (like electrons)
 - Collisions at the full energy, small physics background, (E,p) conservation
 - Muons can a priori do all what electrons can do
 - Muons are heavy (like protons)
 - Negligible synchrotron radiation, no beamstrahlung
 - Small circular colliders, up to very large \sqrt{s}
 - ➡ Excellent energy definition (up to a few 10⁻⁵)
 - Muons are naturally longitudinally polarized (100%)
 - Because arising from π^{\pm} decays to $\mu^{\pm}v_{\mu}$
 - Ultra-precise beam energy and beam energy spread measurement
- **Recent intriguing approach to muon collider**
 - Produce muon beams with low emittance with $e^+e^- \rightarrow \mu^+\mu^-$ at production threshold
 - The threshold e⁺ energy for $\mu^+\mu^-$ production on a thin target (e⁻) is ... 43.7 GeV !
 - Can use the FCC-ee e⁺ ring (or the FCC-ee booster) as μ accumulation and internal target ring !

Towards FCC-μμ?

Towards FCC-μμ ?

- **•** Then inject, accelerate, and collider muons in, e.g., LHC
 - Before they decay (~1000 turns)
 - √s = 14 TeV
 - ~ 7 GeV SCRF
 - Pulsed magnets
 - Cost ~ LHC?

Towards FCC-μμ?

Z pole: 1500 WW: 200

- **Q:** And how about a linear e⁺e⁻ collider at high energy instead ?
 - E.g., with 1 GV/m plasma acceleration (30 km = 30 TeV!)

A1 : Power consumption prohibitive

- Need ~ 3 GW at 10 TeV !
- A2 : Beamstrahlung, SR
 - $\gamma\gamma \rightarrow$ hadrons (pileup)
 - $\sqrt{s_{eff}} << \sqrt{s}$

Even more personal views : China

- Will China be in a position to build an e⁺e⁻ Higgs factory ?
 - Maybe followed by a hadron collider ?
 - Financially, yes ! But ...
 - ... size of the community, expertise, scientific and organizational structure
 - In both accelerator and particle physics
 - ... and political progress not as fast as anticipated
- There will be, most probably, only one such machine in the world
- Don't underestimate the value of CERN
 - ... and its 6o-years track record and treaty in comparison
- CERN should continue to expand geographically
 - With new associate member states
 - With financial contributions of associate members
 - ... and maybe persuade China to make a large in-kind contribution to accelerator ?

The road to the CDR

- Seven volumes to be ready for the European Strategy Update (2019)
 - Available in October 2018

FCC Week 2018

Last collaboration meeting before the European Strategy update

