PSB Absorber/Scraper for LS2

LIU-PSB Working Group #201 meeting
26th September 2017

I. Lamas Garcia, J-A Briz, N. Chritin, C. Delory, J. Heredia, L. Teofili,
Scope of the Presentation

- Introduction
- Operational Scenarios and Beam Parameters
- Design Overview
 - Optics and final Apertures definition
 - Thermo-mechanical simulations
 - Manufacturing Input
 - Vacuum Input
 - Impedance Input
 - Integration Input
 - Survey Input
 - Transport Input
- Project Timeline
Introduction

- LHC Injector Upgrade Project (LIU)

- The increase in beam energy and intensity will lead to potentially more harmful losses and requires mitigation measures including the study of a new collimation/scraping system

- The new PSB scraper/absorber will replace the current WBS installed in section 8L2 of the PSB

- By representing the major aperture restriction in the machine, it should localize the beam losses in Period 8 and limit therefore the activation of the remaining installed machine equipment

- Related official released documents:

 Functional Specification EDMS 1578463
 Space Reservation Request EDMS 1612378
Operational Scenarios and Beam Parameters

(provided by LIU-PSB, https://edms.cern.ch/document/PSB-TS-ES-0001/1.0/TAB3)

- **Scenario 1:**
 - Scraping high-intensity beams at injection
 - 160 MeV
 - Beam losses in scraper: 6 % of 2e13p
 - Pulse period 1.2 s, losses integrated over 20 ms
 - Yielding 4e11 p/ring/s
 - \(\varepsilon_x=9\) mm mrad and \(\varepsilon_y=6\) mm mrad (pessimistic assumption for density)

- **Scenario 2:**
 - Direct impact at top energy
 - 2 GeV
 - Isolde beam at 2e13p, full beam lost within 1 turn
 - Applied during 240 ns
 - \(\varepsilon_x=9\) mm mrad and \(\varepsilon_y=6\) mm mrad

- **Scenario 3:**
 - Beam production via shaving of bright beams
 - 181 MeV
 - Beam losses in scraper: 15 % of 2.8e12p
 - Pulse period 1.2 s, losses integrated over 20 ms
 - Yielding 3.5e11 p/ring/s
 - \(\varepsilon_x=1\) mm mrad and \(\varepsilon_y=1\) mm mrad

Courtesy of F. Schmidt, H. Bartosik, G.P. DiGiovani and B. Mikulec
Design Overview

QFO Absorber/Scrapper QDE

Big aperture mask (Fix) Small aperture mask (Mobil)

QFO QDE
Design Overview

- Optics and final Apertures definition

*Courtesy of F. Schmidt, H. Bartosik, G.P. DiGiovani and B. Mikulec
Design Overview

- Thermo-mechanical simulations

*Courtesy of J. Briz

*Courtesy of J. Heredia
Design Overview

- **Manufacturing Input:**
 - Several iterations during design phase with main workshop.
 - Prototype will be manufactured at the main workshop (T. Coiffet and E. Rigutto, EN-MME).
 - Challenging geometrical tolerances, but achievable.
 - No adjustment system needed.
 - Assembly Technologies such as Press Fitted Graphite
Design Overview

- **Vacuum Input:**
 - **Iterations during design phase with TE-VSC (J. Hansen):**
 - PS Booster Upgrade Working Group Meeting #183.
 - Ion pump type agreed VARIAN VACION PLUS 75.
 - Identification of trapped volumes.
 - Inclusion of hydroformed bellows.
 - Identification best flange location.
Design Overview

- Impedance Input:
 - Iterations during design phase with the Impedance Working Group:
 - CST Simulations performed by L. Teofili -> Device impedance
 - Need of closing up volumes and gaps
 - Include RF fingers
 - Simulations performed by T. Rijjof -> Assessing the influence on the total PSB impedance budget
Design Overview

- **Integration Input:**
 - Iterations during design phase with the Integration Working Group.
 - Chassis presented by N. Chritin at the ICL meeting the 14/06/2017
 - Structural simulations and modal analysis by J. Heredia (EN-STI)

![G: New Frame]

Table: Relative effective mass

<table>
<thead>
<tr>
<th>Mode</th>
<th>Freq. [Hz]</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Rot X</th>
<th>Rot Y</th>
<th>Rot Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4064</td>
<td>3.40E-03</td>
<td>0.063977</td>
<td>6.64E-06</td>
<td>2.61E-02</td>
<td>1.08E-05</td>
<td>8.34E-04</td>
</tr>
<tr>
<td>2</td>
<td>21.0343</td>
<td>6.04E-06</td>
<td>3.62E-03</td>
<td>3.56E-02</td>
<td>1.74E-02</td>
<td>6.54E-02</td>
<td>9.41E-03</td>
</tr>
<tr>
<td>3</td>
<td>24.8194</td>
<td>1.55E-02</td>
<td>2.82E-03</td>
<td>5.56E-02</td>
<td>2.13E-02</td>
<td>5.10E-02</td>
<td>1.53E-02</td>
</tr>
<tr>
<td>4</td>
<td>26.8716</td>
<td>8.81E-04</td>
<td>5.19E-04</td>
<td>1.03E-04</td>
<td>2.20E-07</td>
<td>3.85E-03</td>
<td>1.39E-03</td>
</tr>
<tr>
<td>5</td>
<td>27.5659</td>
<td>9.73E-07</td>
<td>2.71E-05</td>
<td>4.94E-04</td>
<td>2.50E-04</td>
<td>3.10E-05</td>
<td>1.21E-05</td>
</tr>
<tr>
<td>6</td>
<td>30.9203</td>
<td>1.28E-02</td>
<td>0.0224959</td>
<td>5.40E-03</td>
<td>1.56E-02</td>
<td>1.02E-02</td>
<td>2.87E-03</td>
</tr>
<tr>
<td>7</td>
<td>32.302</td>
<td>0.233715</td>
<td>1.31E-02</td>
<td>0.113122</td>
<td>7.25E-02</td>
<td>0.104121</td>
<td>7.81E-02</td>
</tr>
<tr>
<td>8</td>
<td>41.3423</td>
<td>4.77E-03</td>
<td>4.13E-03</td>
<td>1.53E-02</td>
<td>4.70E-02</td>
<td>1.40E-03</td>
<td>1.61E-03</td>
</tr>
<tr>
<td>9</td>
<td>52.3782</td>
<td>2.99E-04</td>
<td>1.17E-02</td>
<td>0.03156</td>
<td>0.301276</td>
<td>2.66E-02</td>
<td>2.86E-03</td>
</tr>
<tr>
<td>10</td>
<td>54.1796</td>
<td>1.13E-03</td>
<td>2.58E-08</td>
<td>3.19E-03</td>
<td>6.15E-04</td>
<td>6.48E-04</td>
<td>3.01E-03</td>
</tr>
<tr>
<td>11</td>
<td>58.4665</td>
<td>4.33E-06</td>
<td>3.62E-07</td>
<td>1.11E-05</td>
<td>1.55E-04</td>
<td>8.46E-05</td>
<td>3.77E-05</td>
</tr>
<tr>
<td>12</td>
<td>60.3107</td>
<td>3.17E-03</td>
<td>2.82E-05</td>
<td>1.15E-02</td>
<td>1.50E-02</td>
<td>4.40E-03</td>
<td>1.89E-03</td>
</tr>
<tr>
<td>13</td>
<td>60.4694</td>
<td>1.23E-05</td>
<td>7.34E-06</td>
<td>6.94E-02</td>
<td>3.55E-02</td>
<td>0.1431</td>
<td>1.20E-04</td>
</tr>
<tr>
<td>14</td>
<td>80.7334</td>
<td>5.97E-05</td>
<td>3.59E-03</td>
<td>1.80E-02</td>
<td>3.42E-02</td>
<td>3.55E-03</td>
<td>2.32E-03</td>
</tr>
<tr>
<td>15</td>
<td>81.5765</td>
<td>9.27E-04</td>
<td>5.29E-03</td>
<td>3.22E-02</td>
<td>1.28E-02</td>
<td>9.20E-03</td>
<td>2.45E-03</td>
</tr>
<tr>
<td>16</td>
<td>88.502</td>
<td>5.11E-06</td>
<td>5.08E-03</td>
<td>5.54E-02</td>
<td>6.01E-02</td>
<td>1.99E-02</td>
<td>9.44E-03</td>
</tr>
<tr>
<td>17</td>
<td>98.5571</td>
<td>1.20E-05</td>
<td>4.87E-07</td>
<td>9.10E-03</td>
<td>4.81E-03</td>
<td>1.01E-02</td>
<td>1.71E-05</td>
</tr>
<tr>
<td>18</td>
<td>104.906</td>
<td>1.64E-05</td>
<td>1.11E-04</td>
<td>2.50E-05</td>
<td>2.93E-05</td>
<td>1.56E-04</td>
<td>4.67E-04</td>
</tr>
<tr>
<td>19</td>
<td>116.642</td>
<td>2.81E-03</td>
<td>3.07E-04</td>
<td>4.70E-02</td>
<td>2.55E-02</td>
<td>1.29E-02</td>
<td>4.94E-03</td>
</tr>
<tr>
<td>20</td>
<td>131.978</td>
<td>1.01E-04</td>
<td>1.23E-05</td>
<td>6.97E-03</td>
<td>3.78E-03</td>
<td>7.68E-03</td>
<td>1.03E-04</td>
</tr>
</tbody>
</table>

Figure 2: Total deformation of the frame support due to the gravity action.
Design Overview

- Survey Input:
 - Iterations during design phase with EN-ACE (T. Dobers):
 - Adjustable support
 - Alignment in surface
 - Pre-settings to be achieved with tooling
Design Overview

- **Transport Input:**
 - Iterations during design phase with EN-HE (S. Fumeys and F. Delsaux):
Project Timeline

- 11/2017 Final Functional Specification release
- 01/2018 Conceptual Design (3D)
- 04/2018 Detailed Design (3D)
- 05/2018 Detailed Design (2D drawings)
- 06/2018 Prototype Production, Qualification Test and Series Production Start
- 2019 Series Production Completion and Qualification Tests
- 02/2020 Ready for Installation
- LS2 2020 Commissioning Tests
- LS2 2020 Ready for Operation
Thank you!