

FACULTÉ DES SCIENCES

Overview of the T2K techniques

Davide Sgalaberna, University of Geneva CENF-ND Sensitivity Working Group (WG4)

Design principle: the off-axis angle

Near Detector: $N_{ND} \sim \Phi(E_{\nu})\sigma(E_{\nu})\epsilon_{ND}$

Flux Cross Detector Oscillation Section Efficiency probability Far Detector: $N_{FD} \sim \Phi(E_{\nu})\sigma(E_{\nu})\epsilon_{FD}P_{osc}(E_{\nu})$

- Systematic errors enter the modeling of flux, cross section and detector
- To reduce errors on the models use the measurements at the Near Detector

Neutrino and antineutrino flux prediction

- Neutrino flux prediction tuned with hadron spectra measured at NA61/SHINE
- Flux systematic uncertainty reduced from ~30% to ~10% (thin target data)

- Less than 1% intrinsic electron (anti)neutrino component at the peak
- <10% of wrong-sign background (v_{μ} in \overline{v}_{μ} beam)
- Prediction of flux correlations between near / far detector, neutrino / antineutrino beam, v_{μ}/v_e is used

T2K near detector complex

• Muon monitor:

- spill-by-spill monitoring of the beam
- On-axis detector:
 - INGRID
 - measure beam intensity / direction

Off-axis detector:

- 2.5° off-axis magnetized detector
- precise measurement of neutrino flux and cross section
- measure wrong-sign background (20-30% v_{μ} in \overline{v}_{μ} beam after interaction)

T2K near detector complex

NIM A 659 (2011) 106–135

- Located in Mozumi mine
 - 2700 m.w.e overburden
- Water Cherenkov detector (50 kton)
- Fiducial mass 22.5 kton
- Inner detector
 - 11129 20-inch PMTs
- Outer veto detector
 - 1885 8-inch PMTs
 - determine fully-contained events
- T2K beam event: ±500 μs window

Strategy for oscillation analyses

T2K data collection

• Accumulated about 29% of the approved T2K protons-on-target (POT)

- 14.7x10²⁰ POT in neutrino mode
- 7.6x10²⁰ POT in antineutrino mode
- Phys. Rev. Lett. 118 (2017) no.15, 151801 PRL Editor's Suggestion
- arXiv:1707.01048
- Stable operation with 470 kW beam power
- New results presented in August at KEK laboratory

https://kds.kek.jp/indico/event/25337/material/slides/0.pdf

Near Detector Fit: the samples

- Antineutrino samples: 1 μ ⁺ candidates (CC-1track) + CC-Ntracks
- Neutrino samples: 1 μ^{-} candidates (CC-0 π) + 1 π^{+} (CC-1 π) + CC other
- Simultaneous analysis of neutrino and antineutrino data (μ momentum/angle)
- Additional samples to measure wrong-sign background (v_{μ} in v_{μ} -bar) Neutrino samples

CC-1π

Antineutrino samples

CC Other

Maximum binned likelihood fit

• Fit parameters are constrained by a gaussian penalty term (except a few)

Near Detector Fit: flux and cross-section uncertainties

Super-K Antineutrino Mode Flux

Prior to ND280 constraint

After ND280 constraint

Neutrino Energy (GeV)

Measure neutrino flux and cross section at ND280

- Different fit parameters as a function of true, reco energy, flavor and interaction mode
 - normalization parameters (e.g. flux, xsec)
 - modelled with non-linear response functions (e.g. MAQE, 2p2h, RPA, etc...)
- The fit reproduces well data: p-value=0.47

• Best-fit parameter values and covariance matrix are obtained and used to constrain systematics in the oscillation measurement

Near Detector Fit: flux and cross-section uncertainties

- Anti-correlations between neutrino flux and cross-section parameters
- The covariance matrix will be used to constrain the flux and cross-section systematic parameters in the neutrino oscillation analysis

• Impact of systematic uncertainties that can be constrained by the ND280 data on the total Super-K # of events from ~13% to ~3% after the fit

• Statistical uncertainties still dominant (more details in backup)

	1Rmu		1Re			
Error Source	FHC	RHC	FHC	RHC	FHC 1 d. e.	FHC/RHC
SK Detector	1.9	1.6	3.0	4.2	16.5	1.6
SK FSI+SI+PN	2.2	2.0	2.9	2.5	11.3	1.6
SK Detector+FSI+SI+PN	2.9	2.5	4.2	4.8	19.2	2.1
ND280 const. flux & xsec	3.3	2.7	3.2	2.9	4.1	2.5
$\sigma(u_e \)/\sigma(u_\mu \), \ \sigma(\overline{ u}_e \)/\sigma(\overline{ u}_\mu \)$	0.0	0.0	2.6	1.5	2.6	3.1
$ m NC1\gamma$	0.0	0.0	1.1	2.6	0.3	1.5
NC Other	0.3	0.3	0.1	0.3	1.0	0.2
Syst. Total	4.4	3.8	6.3	6.4	19.6	4.7

• Impact of systematic uncertainties that can be constrained by the ND280 data on the total Super-K # of events from ~13% to ~3% after the fit

• Statistical uncertainties still dominant (more details in backup)

• Joint fit of all 5 samples at the far detector

Joint fit of all 5 samples at the far detector

 Marginalize all the systematic parameters and oscillation parameters "not of interest" $\lambda_{marg}(\vec{\theta}) = \int_{A} \lambda(\vec{\theta}; \mathbf{a}) \pi(\mathbf{a}) d\mathbf{a} = \frac{1}{n} \sum_{i=1}^{n} \lambda(\vec{\theta}; \mathbf{a}_i)$

• $\pi(a)$ is the prior used to marginalize

- Covariance matrix evaluated with SuperK atmospheric data for detector systematics

- PDG or flat priors for neutrino oscillation parameters (reactors for $sin^22\Theta_{13}$)

Results

• Feldman-Cousins to get the right coverage

- Best-fit δ_{CP} is -1.833 radians
- Normal Ordering is favored by the T2K data
- CP conserving values (0, π) are excluded with a significance of 2σ

- Bayesian joint fit of Near and Far detector (MCMC): validation of the near to far detector extrapolation

Measured Vs Sensitivity

- Data constrain δ_{CP} more than the sensitivity
- How likely can this happen?
- Perform many pseudo-experiments at δ_{CP} = - $\pi/2$ and Normal Ordering

- Data $\Delta \chi^2$ falls within the 95.45% of the pseudo-experiments
- 30% of pseudo-experiments exclude $\delta_{\text{CP}}\text{=}0$ at 2σ
- 25% of pseudo-experiments exclude $\delta_{\text{CP}} = \pi \text{ at } 2\sigma$

Effect of different models on oscillation analysis

- Neutrino interaction models are constantly updated
- Check robustness of T2K results against potential mis-modeling, due to models not yet included in the MC
- Generate fake data sets consistent with variations of the cross-section model (data-driven or different assumptions in the model)
- Fit the fake data set with the MC currently used in the oscillation analysis (both near and far detector) 30_{F} 30_{F}
- Evaluate potential biases on the measured neutrino oscillation parameters
- Full study performed with the 2016 model and statistic
- Work in progress
- Details of the 2016 studies can be found in arXiv:1707.01048

No significant impact on the δ_{CP} measured intervals

How can we improve the sensitivity?

- More precise measurements of the unoscillated neutrino interactions
 - full acceptance
 - lowest momentum threshold
 - more data
- Continue interactions with theoreticians: "we" need improved models (and generators), "they" need more and better data
 - new cross-section measurements (T2K has an extensive program)
 - fake data studies
- Higher statistics analysis (e.g. T2K-II, Hyper-K, DUNE) may require optimized statistical tools and more CPU resources...

BACKUP

Design principle: the off-axis angle

 $P(v_{\mu} \rightarrow v_{\mu})$

 $P(v_{\mu} \downarrow v_{e})$

0.5

0.1

- 30 GeV proton beam on 90 cm long graphite target
- v_{μ} and \overline{v}_{μ} produced by pion and kaon decay:
 - $-\pi^+ \rightarrow \mu^+ + V_{\mu}$
 - $-\pi^{-} \rightarrow \mu^{-} + \overline{V}_{\mu}$
- $\Phi_{v_{\mu}}^{295km}$ (A.U.) • Invert magnet polarity to produce a \overline{v}_{μ} beam
- First off-axis neutrino beam experiment (2.5°)
 - E_{ν} (GeV) - narrow spectrum peaked at 0.6 GeV, on the expected oscillation maximum

 $\sin^2 2\theta_{23} = 1.0$

 $\sin^2 2\theta_{13} = 0.1$ $\Delta m_{22}^2 = 2.4 \times 10^{-3} \,\mathrm{eV}^2$

₩₩₩ OA 0.0°

OA 2.0° OA 2.5°

 $- - IH, \delta_{CP} = 0$

- IH, $\delta_{CP} = \pi/2$

 $\begin{array}{l} NH, \, \delta_{\rm CP} = 0 \\ NH, \, \delta_{\rm CP} = \pi/2 \end{array}$

Set B
0.304
0.45
0.0219
7.53x10 ⁻⁵ eV ²

	Set A	Set B
$sin^2\theta_{12}$	0.304	0.304
sin²θ ₂₃	0.528	0.45
$sin^2 \theta_{13}$	0.0219	0.0219
Δm ² ₁₂	7.53x10 ⁻⁵ eV ²	7.53x10 ⁻⁵ eV ²
Δm ² 23	2.509x10 ⁻³ eV ²	2.509x10 ⁻³ eV ²
δ _{CP}	-1.601	0

	Predicted Rates (pars except δ_{CP} take set A values)				
Sample	δ _{CP} = -π/2	$\delta_{CP} = 0$	δCP = π/2	δCP = π	Observed Rates
CCQE 1-Ring e-like v-mode	73.5	61.5	49.9	62.0	74
CC1 π 1-Ring e-like ν -mode	6.92	6.01	4.87	5.78	15
CCQE 1-Ring e-like $\bar{\nu}$ -mode	7.93	9.04	10.04	8.93	7
CCQE 1-Ring μ -like ν -mode	267.8	267.4	267.7	268.2	240
CCQE 1-Ring μ -like $\bar{\nu}$ -mode	63.1	62.9	63.1	63.1	68

Super-Kamiokande events

- 1 Cherenkov ring (protons below threshold)
- Low scattering
- Ring with sharp edge

- 1 Cherenkov ring
- Multiple scattering
- EM shower
- Ring with "fuzzy" edge

- 2 Cherenkov rings
- EM shower from $\pi^0 \rightarrow \gamma \gamma$
- Can be misidentified as an electron

• Probability to misidentify a muon as an electron is smaller than 1%

MC

Neutrino oscillations at T2K

$$\left(P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23}) \sin^2 \left(\Delta m_{31}^2 \frac{L}{4E}\right)\right)$$

• Precise measurement of $sin^2 2\Theta_{23}$

- E ~ 0.6 GeV L ~ 295 km
- Test of CPT by comparing measured $v_{\mu} \rightarrow v_{\mu}$ with $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$

$$\begin{cases} P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \frac{\sin^{2} 2\theta_{13} \times \sin^{2} \theta_{23} \times \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}}}{(1-x)^{2}} & \text{Phys. Rev. D64 (2001) 053003} \\ \text{Leading term} \\ \text{CP violating} & \bigcirc \alpha (\sin \delta_{CP}) \times \sin^{2} 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \sin \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ \text{`+'' for antineutrino} \\ \text{CP conserving} & \alpha (\cos \delta_{CP}) \times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \\ + O(\alpha^{2}) & x = \frac{2\sqrt{(2)}G_{F}N_{e}E}{\Delta m_{31}^{2}} & \alpha = |\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}| \sim \frac{1}{30} & \Delta = \frac{\Delta m_{31}^{2}L}{4E} \end{cases}$$

- The leading term defines the octant Θ_{23} >45° or Θ_{23} <45°
- All mass splittings and mixing angles have been measured to be non-zero: second order term can violate the CP symmetry if $sin\delta_{CP} \neq 0$

Bayesian analysis

- Produce posterior probability distributions and credible intervals in Bayesian analysis
- > Two choices for priors: flat in δ_{cp} and flat in $sin(\delta_{cp})$

CP conserving values (0, π) fall outside of the 2 σ intervals

	sin²θ ₂₃ < 0.5	sin²θ ₂₃ > 0.5	Sum
NH ($\Delta m_{32}^2 > 0$)	0.193	0.674	0.868
IH ($\Delta m_{32}^2 < 0$)	0.026	0.106	0.132
Sum	0.219	0.781	

Statistical methods

- Hybrid Bayesian-Frequentist analysis (confidence intervals):
- scan $\Delta \chi^2 = -2 ln \lambda_{marg}$ surface as a function

of e.g. δ_{CP}

- if $\Delta \chi^2 > \Delta \chi^2_{crit}$ --> excluded at X%CL

- Use Feldman-Cousins method: MC method to evaluate $\Delta \chi^2_{crit}$
- Two analyses: VALOR using Ereco-O (primary analysis) and p-O

Statistical methods

- Hybrid Bayesian-Frequentist analysis (confidence intervals):
- scan $\Delta \chi^2 = -2 ln \lambda_{marg}$ surface as a function of e.g. δ_{CP}
- if $\Delta \chi^2 > \Delta \chi^2_{crit}$ --> excluded at X%CL
- Use Feldman-Cousins method: MC method to evaluate $\Delta \chi^2_{crit}$
- Two analyses: VALOR using Ereco-Ө, p-Ө analysis

Agreement between all the 3 analyses

• Fully Bayesian analysis (credible intervals):

- Markov Chain MC
- Bayesian intervals: weighted by the prior on δ_{CP}
- Using Ereco-O
- Joint fit of Near and Far detector: validation of the near to far detector extrapolation

