### Methods to measure the cosmic-ray composition with the Auger Engineering Radio Array

### Fabrizia Canfora for the Pierre Auger Collaboration











# The Auger Engineering Radio Array

- 153 radio antenna stations spread over 17 km<sup>2</sup> in the Argentinean pampa
- Sensitive to the frequency range of **30 to 80 MHz**
- Located within the particle detector array and in the field of view of fluorescence telescopes of the Pierre Auger Observatory









### Radio emission from extensive air showers

#### • Geomagnetic:

- e<sup>+</sup> and e<sup>-</sup> separation in the Earth magnetic field
- radiation linearly polarized in the direction of the Lorentz force





#### • Charge excess:

- longitudinal charge imbalance
- radiation radially polarized towards the shower axis



### Radio emission from extensive air showers

#### • Geomagnetic:

- e<sup>+</sup> and e<sup>-</sup> separation in the Earth magnetic field
- radiation linearly polarized in the direction of the Lorentz force



### Asymmetric footprint



#### • Charge excess:

- longitudinal charge imbalance
- radiation radially polarized towards the shower axis



### Mass composition techniques



Fabrizia Canfora

#### Parametrizations of the energy density distribution:

- subtraction of two gaussians a.
- b. description of the geomagnetic and charge excess mechanisms



Fabrizia Canfora

ARENA - Catania 12.06.2018

Iron  $\theta$ =49° E<sub>MC</sub>= 1.36 EeV  $X_{max}^{MC}$ =649.86 g/cm<sup>2</sup>

200

### **1.0** Parametrization of the energy density distribution:





The width of the footprint is linearly correlated to the distance to  $X_{max}$ 

#### Reconstruction uncertainty ~ 51 g/cm<sup>2</sup>

**1.b** Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms



CoREAS simulation with a star-shaped antenna alignment in the shower plane **v×B-v×v×B** 

#### More details $\rightarrow$ talks C.Glaser

ARENA - Catania 12.06.2018

### **1.0** Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms



**1.b** Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms



Reconstruction uncertainty ~ 41 g/cm<sup>2</sup>

#### Auger Fd-Rd hybrid data



Fabrizia Canfora

#### ARENA - Catania 12.06.2018

# Xmax from the spectral information



# Xmax from the spectral information

2.

### FD-RD $X_{max}$ comparison for 3 events

Spectral index **b** as function of the the distance to the shower maximum The **grey** line is the best prediction line obtained using  $X_{max}^{FD}$ 



0.5 0 02

-0.5

-1.5

-2.5

E<sub>ED</sub>=(5.90±0.73)·10<sup>17</sup>eV

 $X_{\rm max}^{\rm FD}$  = 590.54 ± 25.62 g/cm<sup>2</sup>

 $X_{\rm max}^{\rm RD}$  = 556.82 ± 138.65 g/cm<sup>2</sup>

 $\theta_{\rm ED} = (56.6 \pm 0.7)^{\circ}$ 

 $\chi^2/(n-1) = 0.11$ 

2 stations

# Xmax from the arrival time fit

### 3.

The arrival time distribution of the radio signal can be well described by a hyperbola



The angle p of the asymptotic cone of the hyperbola depends on  $X_{max}$ 



# Distance to shower maximum as a function of the cone opening angle $\rho$ for the MC dataset

The dashed line shows the polynomial function fitted on the profile distribution

## Xmax from the arrival time fit

3.

FD-RD  $X_{max}$  comparison for 3 events



The dashed line shows the bisection line

Q.Dorosti arXiv:1705.06230

# Summary

#### Three independent methods under investigations

| 1. X <sub>max</sub> from the energy density footprint                                                                                 | 2. X <sub>max</sub> from spectral information                                                                                                            | 3. X <sub>max</sub> from the arrival time fit                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| The width of the footprint is<br>correlated to the distance to<br>$X_{max}$ .<br>Footprint parametrizations:<br>a. subtraction of two | The spectral slope of radio<br>signals depends on $X_{max}$ .<br>Cosmic rays that interact<br>high in the atmosphere have<br>a shorter pulse and a lower | Arrival time measurements<br>can be used to study the<br>longitudinal shower<br>development.<br>The opening angle of the |
| b. geomagnetic and<br>charge excess<br>mechanisms                                                                                     | speetror slope.                                                                                                                                          | sensitive to $X_{max}$ .                                                                                                 |

The results of these analysis can be combined to obtain a mass composition reconstruction that uses all the information in the detected radio signal

### Backup

### Energy density



Energy density in eV/m<sup>2</sup>

Time integral of Poynting vector

$$u = \varepsilon_0 c \left( \Delta t \sum_{t_1}^{t_2} |\vec{E}(t_i)|^2 - \Delta t \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_3}^{t_4} |\vec{E}(t_i)|^2 \right)$$
Window  $[t_1 - t_2]$  around Noise subtraction the maximum of the

Hilbert envelope

### Energy density parametrization - two Gaussians

**1.0** Parametrization of the energy density distribution:

a. subtraction of two gaussians

$$u(\vec{r}) = \mathbf{A} \cdot \left[ \exp\left(\frac{-(\vec{r} + C_1 \cdot \vec{e}_{\vec{v} \times \vec{B}} - \vec{r}_{core})^2}{\sigma^2} \right) - C_0 \cdot \exp\left(\frac{-(\vec{r} + C_2 \cdot \vec{e}_{\vec{v} \times \vec{B}} - \vec{r}_{core})^2}{(C_3 \cdot \exp(C_4 \cdot \sigma))^2} \right) \right]$$

Nelles et al., Astropart. Phys. 60, 13 (2015)

#### **A** amplitude

- $\sigma$  width of the footprint
- *r*<sub>core</sub> coordinate of the shower core
- $C_{0-4}$  simulation-based constants



### Energy density parametrization - Geo and Ce

#### 1.b Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms

#### Geomagnetic

$$\begin{aligned} \mathbf{Geomagnetic} \\ f_{geo} &= \begin{cases} \frac{1}{N_{R_{-}}} E'_{geo} \exp\left(-\left(\frac{r-R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^{p(r)}\right) \\ \frac{1}{N_{R_{+}}} E'_{geo} \left[\exp\left(-\left(\frac{r-R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^{p(r)}\right) + \exp\left(-\left(\frac{r+R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^{p(r)}\right)\right] & \text{if } R_{geo} \geq 0 \end{aligned}$$

$$\begin{aligned} \mathbf{Geomagnetic} \\ \mathbf{f}_{geo} &= \left\{ \frac{1}{N_{R_{+}}} E'_{geo} \left[\exp\left(-\left(\frac{r-R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^{p(r)}\right) + \exp\left(-\left(\frac{r+R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^{p(r)}\right)\right] & \text{if } R_{geo} \geq 0 \end{aligned}$$

$$\begin{aligned} \mathbf{Geomagnetic} \\ \mathbf{f}_{geo} &= \left\{ \frac{1}{N_{R_{+}}} E'_{geo} \left[\exp\left(-\left(\frac{r-R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^{p(r)}\right) + \exp\left(-\left(\frac{r+R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^{p(r)}\right)\right] & \text{if } R_{geo} \geq 0 \end{aligned}$$

$$\begin{aligned} \mathbf{Geomagnetic} \\ \mathbf{Geomagnetic}$$

#### 1.b Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms



#### **Energy density distribution**

Geomagnetic

excess

arde

## Shape of the energy density distribution

### **1.b** Parametrization of the energy density distribution:

- b. description of the geomagnetic and charge excess mechanisms
- (A) that hit ground before emitting most radiation energy
- (B) that hit ground shortly after emitting all radiation energy
- (C) that have large distances between the ground and the air-shower development



### Spectral index parametrization

2.

$$b_T = \frac{1}{\nu_+ - \nu_-} \log_{10} \left[ \frac{10^{b_G(\nu_+ - \nu_0)} + f(\Phi_{\text{obs}})R \cdot 10^{b_C(\nu_+ - \nu_0)}}{10^{b_G(\nu_- - \nu_0)} + f(\Phi_{\text{obs}})R \cdot 10^{b_C(\nu_- - \nu_0)}} \right]$$

where **b**<sub>G</sub> and **b**<sub>C</sub>



$$b \times 10^2 = \frac{\beta}{1 + \exp(-\gamma \cdot D_{\text{max}}/1\text{km})} - \beta$$

 $\pmb{\beta}$  and  $\pmb{\gamma}$  are functions of the distance to the shower axis d

**R** is the ratio between the scale parameter  $A_{c}/A_{g}$ 

 $f(\Phi_{obs}) = \cos \Phi_{obs}$  in the  $\vec{v} \times \vec{B}$  direction

### Spectral index parametrization

2.



S. Jansen PhD thesis (2016)