A new LDF parameterization for the air shower radio footprint applied to LOFAR data
A new LDF parametrization for the air shower radio footprint applied to LOFAR data

I. Plaisier, A. Bonardi, S. Buitink, A. Corstanje, H. Falcke,
B. M. Hare, J. H. Horandel, P. Mitra, K. Mulrey, A. Nelles, J. P. Rachen,
L. Rossetto, P. Schellart, O. Scholten, S. ter Veen, S. Thoudam,
T. N. G. Trinh, T. Winchen
presented by: Jorg Horandel
ARENA meeting 13th June
Radio emission

On the vxB = 0 axis, the geomagnetic and charge excess component can be separated completely!

A new LDF function

\[
f_{geo} = \begin{cases}
\frac{1}{N_{R-}} E_{geo} \exp\left(-\left(\frac{r-R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^2\right) & R_{geo} < 0 \\
\frac{1}{N_{R+}} E_{geo} \left[\exp\left(-\left(\frac{r-R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^2\right) + \exp\left(-\left(\frac{r+R_{geo}}{\sqrt{2}\sigma_{geo}}\right)^2\right)\right] & R_{geo} \geq 0
\end{cases}
\]

\[
f_{ce} = \frac{1}{N_{ce}} E_{ce} r^k \exp\left(-\frac{r^2(k+1)}{2\sigma_{ce}^2}\right)
\]

\[R_{ce} = \frac{\sqrt{k}}{\sqrt{k+1}}\]

[2]

Geomagnetic on \(vxB = 0\) arm

Charge excess on \(vxB = 0\) arm

\[
f_{v\times B}(r) = \sqrt{f_{geo}(r) + \cos\phi \sqrt{f_{ce}(r)}}^2
\]

\[
f_{v\times(v\times B)}(r) = \sin^2\phi f_{ce}(r)
\]

\[f = f_{v\times B} + f_{v\times(v\times B)}\]

[2]
CoREAS simulations

Footprint of radio emission on the ground

$$f(E_{geo}, E_{ce}, R_{geo}, R_{ce}, \sigma_{geo}, \sigma_{ce}, x, y)$$

$$f(E(E_{geo}, E_{ce}), D_{x\text{max}}(R_{geo}, R_{ce}, \sigma_{geo}, \sigma_{ce}), x, y)$$

- CoREAS simulations are used to parametrize the function
- New function has only 4 parameters
- Just dependent on shower properties
CoREAS simulations

Shower plane event 118956923

Energy fluence event 118956923
CoREAS simulations

Parametrizations

- $R_{geo} = p_0 + p_1 \cdot D + p_2 \cdot D^2 + p_3 \cdot D^3 + p_4 + D^4$
- $\sigma_{geo} = p_0 + p_1 \cdot D + p_2 \cdot D^2 + p_3 \cdot D^3 + p_4 + D^4$
- $k = p_0 - \frac{p_1 - p_0}{1 + \exp(1 - p_2 \cdot D)}$
- $\sigma_{ce} = p_0 + p_1 \cdot D + p_2 \cdot D^2 + p_3 \cdot D^3$
- $\log\left(\frac{E_{geo}}{\sin(\alpha) T^2}\right) = p_0 + p_1 \cdot \log(E)$
- $\log\left(\frac{E_{ce}}{\sin(\alpha) T^2}\right) = p_0 + p_1 \cdot \log(E)$
CoREAS simulations

- 250 showers based on real LOFAR events are used for analysis
- Simulations with realistic atmospheric model
CoREAS simulations

Reconstructed versus true energy

Reconstructed versus true distance to X_{max}

$\mu = -0.05 \quad \sigma = 0.05$

$\mu = 3.8 \quad \sigma = 21.6$
CoREAS simulations

Difference reconstructed and true x-coordinate of shower axis

\[
\mu = -1.70 \\
\sigma = 4.85
\]

Number of events

\[x_{sim} - x_{fit} \ [m] \]

Difference reconstructed and true y-coordinate of shower axis

\[
\mu = -0.88 \\
\sigma = 0.52
\]

Number of events

\[y_{sim} - y_{fit} \ [m] \]
LOFAR data

Shower plane event 118956923

Superterp

Energy fluence event 118956923

Energy fluence [eV/m^2]

Position in vxvxB [m]

Position in vxvxB [m]

Position in vxvxB [m]
LOFAR data

- 60 showers with at least 3 stations triggered are used for analysis

Parameters of measured showers
LOFAR data

Example fit of data for event 48361669

![Diagram showing energy fluence and position in vxB and vxvxB for event 48361669]
LOFAR data

Fit result examples

Event #1

Event #2

Shower plane

Distance to shower axis [m]

Position in vxB [m]

Position in vxvxB [m]

Position in vxvxB [m]

48361669

Energy fluence [eV/m²]

Energy fluence [eV/m²]

Distance to shower axis [m]

Distance to shower axis [m]

Distance to shower axis [m]

Distance to shower axis [m]
LOFAR data

- E_{fit} values are compared with E from particles detector or with E from old LDF
- $D_{X_{max}}$ values are compared with $D_{X_{max}}$ from computational intensive method, which uses old LDF as starting values
LOFAR data

Compare x_{fit} with x

![Graph showing comparison between x_{fit} and x with mean $\mu = -1.64$ and standard deviation $\sigma = 7.58$.]

Compare y_{fit} with y

![Graph showing comparison between y_{fit} and y with mean $\mu = 0.84$ and standard deviation $\sigma = 7.71$.]
Conclusions

- New analytic function to describe radio footprint on the ground
- Successfully applied to LOFAR data
- Function used to reconstruct properties of simulated shower with $\sigma_E = 5\%$, $\sigma_{Dx_{max}} = 29.51 \text{ g/cm}^2$, $\sigma_x = 4.85 \text{ m}$, $\sigma_y = 0.52 \text{ m}$
- Function used to reconstruct properties of measured events with $\sigma_E = 30\%$, $\sigma_{Dx_{max}} = 33.9 \text{ g/cm}^2$, $\sigma_x = 7.58 \text{ m}$, $\sigma_y = 7.71 \text{ m}$