

Determining atmospheric electric fields through radio emission from air showers

Gia Trinh and Olaf Scholten

KVI – CART, University of Groningen

Cosmic Lightning Project & LOFAR Cosmic Ray KSP

G. Trinh, O. Scholten, S. Buitink , U. Ebert, B.M. Hare, H. Leijnse, A. Bonardi, A. Corstanje, H. Falcke, J.R. Hörandel, P. Mitra, K. Mulrey, A. Nelles, J.P. Rachen, L. Rossetto, C. Rutjes, P. Schellart, S. Thoudam, S. ter Veen, T. Winchen

ARENA - 2018

Outline

- Atmospheric electric fields affect radio footprint ← → determine atmospheric fields from the footprint – Mechanism; distinguish *E*_{//} and *E*_⊥
- Procedure we use to determine the structure
 - Stokes parameters (Intensity & Linear and circular polarization)
 - Fit the complete footprint
- Results strong fields in non-thunderstorms
- Results tomography

Observations; polarization footprint

Observations; intensity footprint

Radio emission in presence of an electric field

Earth magnetic field + electric field induce electric current \overrightarrow{f} in pancake direction: F = v x B + E

In thunderstorms: $|v \times B| << |E_|$

 \vec{E}_{\perp} : - increases current - changes direction

 $\vec{E}_{//}$: - minor effect

Earth's magnetic field

 \vec{E}_{\perp}

Modelling structure atmospheric E-fields

Interference of emission from different heights (a)

→ ring-like structure in intensity if currents are opposite

Destructive interference depends on relative arrival times, or distance to shower axis.

Signal is linearly polarized along direction of atmospheric electric field

Interference of emission from different heights (b)

→ Circular polarization if electric fields are at an angle

The pulses from the upper layer arrive with a delay with respect to the pulses from the lower layer resulting in a change of the polarization angle over the duration of the pulse, seen as circular polarization.

Measured signal has strong circular polarization (Stokes V/I ≠ 0)

See: Trinh et. al. (2016) Physical Rev. D 95, 083004

11 'Thunderstorm' events analyzed

Stokes parameters: I, Q, U, V Linear polarization angle: 2 ϕ =atan(U/Q)

Circular polarization = V/I

Chi-square fitting of I, Q/I, U/I, V/I using MGMR3D [PRD97(2017)023005] Fit: 3-layer structure of E-field & X_{max} Final calculation with Coreas

Results for event #1

Calculation	Ι			II			III			Fit results are stable						
Energy (eV)	1.4×10^{17}			4.6×10^{16}			$\boxed{4.0\times10^{16}}$									
Layer	1	2	3	1	2	3	1	2	3	1.0	10			— I _{v ×}	B	
h (km)	13.3	7.9	2.8	16.7	9.3	2.8	7.6	3.3	1.6				12	I _{v ×}	⊲[v × B]	
E (kV/m)	14	14	103	41	17	104	15	107	42	ti 0.5	1/21		And	<u>N.</u>		
α (°)	156	-125	101	104	-109	104	-103	119	-109	d curr	the second		P	The second second second		
$X_{\rm max} ({\rm g/cm^2})$	526			634		743		0.0 alize		1	\sim					
$X_{\rm max}$ (km)	7.3			5.9			4.7			₽ 2-0.5	\sim		/			
χ^2_{3D}	3.02			3.36			3.36					No. 1	/			
χ^2_C	4.41			4.14			3.15			-1.0		A Charles				
f_r	8.2			13.3			8.4			C)	5 heig	10 ht (km)	15	2	

Select ideal solution based on chi-square from CoREAS normalization factor for radio intensity (compared to fair weather results)

Event #1, December 14, 2011 @ 21:02:27 UTC, (θ, ϕ) = 39.4 144.8 Event #2, December 14, 2011 @ 21:10:01 UTC, (θ, ϕ) = 14.1 134.0 Event #3, December 14, 2011 @ 21:14:34 UTC, (θ, ϕ) = 24.4 333.0

Results for events #1, 2, 3

	Event - ID	UTC Time	e θ	ϕ	h_1	E_1	α_1	h_2	E_2	$lpha_2$	h_3	E_3	$lpha_3$
			$(^{\circ})$	$(^{\circ})$	(km) (km)	V/m	$(^{\circ})$ ((km)	(kV/m)	$(^{\circ})$	(km)	(kV/m)	$(^{\circ})$
	1	14/12/2011, 21	:02:27 39.4	144.8	7.6	15	-103	3.3	107	119	1.6	42	-109
	2	14/12/2011, 21	:10:01 14.1	134.0	9.2	42	-174	_	_	—	1.9	86	9
	3	14/12/2011, 21	:14:34 24.4	333.0	7.9	23	-107	5.0	89	-59	2.3	17	-46
		26/04/2012 15		190 በ	10 1	69 a	lpha =	angle	with vxB	ł	3.0	34	_109
		•											
	Tomo	graphy:	$\mathbf{E} =$	\mathbf{F}		$E_{\odot \parallel} \mathbf{v}$	·. =		\mathbf{E}_{+} : +	-E	· II V ·		
		0.00		–	$\perp l$ \mid \cdot		i –		∎⊥j i	Ľ	<i>¶</i> ▼ <i>J</i>		
						(T	(
			Consi	stency	$: \mathbf{E}_{\perp}$	$_{i} \cdot (e_{1})$	$\mathbf{v}_i imes \mathbf{v}_i$	$_{j}) =$	$: \mathbf{E}_{\perp j} \cdot$	$(e_{\mathbf{v}})$	$_i imes \mathbf{v}_j$		
•		- -		2.0	-	1	```		<u>c</u>				
Apply to lop: $E_{\perp 1} \cdot (v_1 x v_3) = 3.0$, $E_{\perp 3} \cdot (v_1 x v_3) = 22.6$													
events #1 & 3 E (East, North, Up) = (-3.5±5.2, -12.0±8.3, -19.7±0.4)													
				• •	•	-		-		-			
				,	00		_ ,						
Middle: $E_{11} (v_1 v_2) = -89 = E_{13} (v_1 v_3) = +45$													
E (East North bp) = (-57.±36. b1.±57 - 3 + 3.)													
				/ - 1- /									
		Bottom:	E _{⊥1} • (v ₁ xv ₃)=	= 4.7	<i>,</i> E	E _{⊥3} • (V ₁ XV	₃)= 5.6				
	6/13/2018	F (F	ast North	(Un) =	(4.8 +)	3 -6 4	4+.4	-56	9+ 1)				15
								50.	~ - · + /				

Conclusions

- New –non intrusive way to determine electric fields in clouds
 - \rightarrow large horizontal components
- Tomography possible to determine vertical components
- Even non-thunderclouds have strong electric fields:
 - \rightarrow beware of clouds when analyzing radio emission

Reference:

Thesis Gia Trinh & submitted to Journal of Geophysical Research

