

A rotationally symmetric radio LDF for horizontal air showers

T. Huege, L.Brenk

Executive summary

- the radio signal distribution is asymmetric in the shower plane (interference of geomagnetic and charge-excess emission)
- additional asymmetries due to early-late effects complicate the problem for inclined air showers with zenith angles >60°, so far no solution
- here, we correct for all asymmetries and fit the signal distribution with a rotationally symmetric lateral distribution function

Simulation basis of the model

- 100 proton simulations with CoREAS, providing energy fluences f [eV/m²] of v_xB and v_xv_xB components (thanks Ch. Glaser!)
- antennas in the ground plane according to star-shape in shower plane
- zenith angles from 60° to 80°, azimuth angle random
- energies from 4 EeV to 40 EeV
- magnetic field, refractive index and observation level as for AERA

simulated antenna positions on the ground for one particular air shower

Tackling early-late asymmetries

assume radio source is a point at (known) shower maximum

- project radio antenna positions into shower plane at the core along the line between the antenna and the shower maximum
 - changes source distance and thus received energy fluence f~1/R² [eV/m²]
 - changes lateral distance of antenna for the LDF

Parametrize charge excess fraction from sims

at a given zenith angle ~linear increase of c.e. fraction with axis distance
linear slope increases as power-law of cos(θ) – but with scatter

Scatter in c.e. is related to depth of shower max 0.0025 0.035 1000 100 corrected charge-excess fraction Ã 960 960 0 charge-excess fraction A 0.030 0.0020 920 920 cm² 0.025 g/cm² 880 880 ģ 0.0015 840 840 0.020 Xmax in .⊆ 800 800 Xmax 0.015 0.0010 760 760 720 720 0.010

0.0005

0.0000

0.25

0.20

0.30

0.35

 $\cos(\theta)$

0.40

0.45

0.50

applying an exponential correction with Xmax, $\tilde{a} = a \cdot e^{-DX \max}$, effectively removes the scatter

680

640

600

from Glaser et al. (JCAP 2016, arXiv:1606.01641), correlation of a with the atmospheric density at Xmax is known

680

640

600

0.005

0.000

0.20

0.25

0.30

0.35

 $\cos(\theta)$

0.40

0.45

0.50

Full parametrizatino of charge excess fraction

$$a(r, \theta) = A \cdot r \cdot \cos^{B}(\theta) \cdot e^{Cr + DX \max}$$

- for the 30-80 MHz band
- valid parameters for location of AERA (altitude, magnetic field, representative Malargüe October atmosphere, refractive index)
 - A = 1.260 x 10⁻⁴ m⁻¹
 - B = 4.118
 - C = 8.189 x 10⁻⁴ m⁻¹
 - D = 3.017 x 10⁻³ cm²/g

Symmetrization of LDF (c.e. parametrization)

- assuming rotational symmetry of geomagnetic and charge-excess emission, and using the early-late correction, we can now subtract the charge-excess contribution received at a given antenna and determine the pure geomagnetic emission LDF, which is rotationally symmetric
- method 1: use the derived parametrization for the c.e. fraction and the measurement in the vxB component (i.e., ignore the vxvxB component)
- method of choice when signal-to-noise ratio of weaker vxvxB component is not sufficient

Symmetrization of LDF (direct measurement)

method 2: if signal-to-noise ratio in vxvxB component is sufficient, need not use c.e. parametrization but can determine it directly from polarization measurement and antenna position relative to core

Fit of symmetrized LDF

an exponential of a 3rd-order polynomial works just fine

this is a practical function from the point of fit stability (in log-space)

Fit of symmetrized LDF

an exponential of a 3rd-order polynomial works just fine

this is a practical function from the point of fit stability (in log-space)

Fit of symmetrized LDF

an exponential of a 3rd-order polynomial works just fine

this is a practical function from the point of fit stability (in log-space)

Determine radiation energy via area integral

- area integral of LDF yields radiation energy in geomagnetic component
- find expected quadratic scaling of rad. energy with cosmic ray energy
- the intrinsic scatter of the corresponding energy estimate is ~10%
 - no correction for density at Xmax yet
 - correlation with electromagnetic energy will be better

Conclusion

- we found a way to symmetrize the LDFs of inclined air showers
 - correct for early-late effects
 - assume rotational symmetry of the c.e. and geomagnetic components
 - subtract parametrized or directly measured c.e. component
- we found a practical fit function for the symmetrized LDF
 - exponential of a cubic polynomial
- the radiation energy (and thus cosmic ray energy) can be determined well from an area integral of the symmetrized LDF