

Reconstruction of air-shower measurements with AERA in the presence of pulsed radio-frequency interference

Tim Huege for the Pierre Auger Collaboration

KIT - The Research University in the Helmholtz Association

Transient RFI at the site of AERA

(even) the
Pampa
Amarilla is
bursting with
transient RFI

- we have 15 kHz of transient RFI
- most from horizon, but misreconstructions
- very challenging for self-trigger

RFI comes from a multitude of sources

How we measure in this environment

- 1. we make use of external triggers
 - a buffer of 7 s allows us to wait for triggers from the surface and fluorescence detectors of the Pierre Auger Observatory
- 2. we use information from particle detectors in a "hybrid reconstruction"
 - we know the event-geometry before starting the radio reconstruction
 - on this basis, we set narrow "signal search windows"
 - even so, there is a high change probability for RFI pulses in the window: 1000 ns window x 15 kHz RFI = 1.5% RFI pulse probability per station, and we read out up to 150 stations per event
- 3. we apply several strategies to discern CR pulses from RFI
 - pulse length
 - signal polarization
 - signal clustering
 - consistency of signal arrival times

Cosmic-ray and noise pulses are very similar

Which one is a cosmic-ray pulse?

- we have to develop multiple criteria to discern RFI from cosmicray signals
- future: deep neural networks? even usable for on-line self-triggering?

Methodology and definitions

- we define:
 - a *correct rejection* as a rejection of an RFI pulse by our algorithms
 - a *false rejection* as a rejection of a CR pulse by our algorithms
- we evaluate and optimize our algorithms on the basis of simulations superposed with actual, measured AERA noise

Algorithm 1: Pulse-length rejection

- CR pulses are bandwidth-limited, short pulses
- define two electric-field thresholds
 - fraction of peak amplitude T_S = a E_{max}
 - multiple of noise RMS T_N = b E_{RMS}
- count # of upward crossings of the thresholds in time window tper
 - pulses with too many crossings are too long to be CR pulses

Karlsruhe Institute of Technology

Performance of Pulse-length rejection

expected polarization and its uncertainty at each antenna is estimated \rightarrow

$$E_{\rm exp} \propto \sin \alpha \, \vec{e}_{\rm geo} + a \, \vec{e}_{\rm CE}$$

Algorithm 2: Polarization rejection

given the core position (here from the surface detector reconstruction)

and a simulations-derived model for the charge excess fraction a, the

if polarization angle is well outside expected range, the signal is rejected as a non-CR pulse

Karlsruhe Institute of Technology

Performance of Polarization Rejection

Algorithm 3: Station clustering

- the radio-emission footprint illuminates a contiguous area
- isolated antennas with radio pulses likely record RFI
- caveat: variable grid of antenna stations complicates matters

Performance of clustering rejection

Algorithm 4: Consistency of signal arrival times

the arrival times should form a hyperbolical (approximately conical) front
we identify stations with non-fitting pulse arrival times in an iterative way

Performance of arrival time rejection

Combined performance of the algorithms

Performance when applied to data

- study performance on externally triggered events taken in 2015
- require three radio stations with signal
- evaluate fraction of successfully reconstructed events for different classes of events
- significant reduction of false-positive events

Conclusions

- for AERA, not only triggering, but also reconstruction is challenging due to 15 kHz of transient RFI
- we exploit external triggers and hybrid reconstruction to mitigate the adverse effects of RFI pulses
- even so, significant numbers of RFI pulses contaminate our signal search windows during reconstruction
- we combine 4 algorithms to discern CR and RFI pulses during reconstruction
 - pulse-length rejection
 - polarization rejection
 - signal clustering rejection
 - signal timing rejection
- the application of these algorithms yields high correct and low false rejection rates, no biases, and improves reconstruction efficiency
- these strategies could be very useful for other experiments

Backup

Signal and Noise Pulses

- Signal Pulse: A radio pulse that is actually caused by the air shower
- Noise Pulse: A radio pulse that is caused by noise
- Identification: $\Delta T < 4\sigma = 5$ ns

Performance of consecutive application

ARENA2018, Catania