Neutrino Vertex Reconstruction in South Pole Ice

John Kelley for the ARA Collaboration
ARENA 2018
Catania, Sicily

Askaryan Radio Array (ARA)

 http://arxiv.org/abs/I404.5285

Optics in South Pole Ice

- Index of refraction a function of depth (firn layer)
- radio waves bend away from surface
- Multiple paths possible
- direct and reflected signals
- horizontal / surface propagation not considered in this model
- Neutrino vertex reconstruction needs accurate time delays from raytracing results
- first step for neutrino energy, direction reconstruction

Spline-Fitted Raytrace Tables

- Smoothly interpolate many-dimensional tables with B-splines
- Technical challenges
- discontinuities due to firn shadow, airlice boundary cause ringing
- reflected solutions in addition to direct ray
- solution: cylindrical coordinates + multi-step table lookup

Example raytrace spline fits

source in air: table points with fit

- typical error is ~ 0.3 ns relative to full raytrace calculation
- spline evaluation is 500 times faster

Reconstruction of Simulated Events

- Cross-correlate over all sky using spline time delays for each direction
- parallelized for GPUs with OpenCL
- Simulated $10^{18} \mathrm{eV}$ neutrino vertex direction resolution:
~ 0.3 degree in zenith / azimuth

All-sky All-Distance Reconstruction

- Form cross-correlation skymap for all distances
- "onion" reconstruction
- Distance reconstruction is very limited
- curvature is negligible at O(km) distances

Top 500 Pixels - AraSim $10^{19} \mathrm{eV}$ Event

Deep Calibration Pulsers

Raytraced Radio Paths

Direct and refracted rays from IC-1 to ARA-2 (center)

Deep Pulser Event (IC-I to ARA-2)

both pulses observed: direct (upgoing) and refracted (downgoing)

Directional Reconstruction of Pulser

ARA3 run8311 evt12472

- cross-correlation reconstruction of direct pulses
- sum of CC pairs for all directions in sky
- O(degree) directional resolution
- Distance reconstruction very difficult due to near-plane-wave timing
- solution: use reflected ray
M.-Y Lu

Double-pulse Distance Reconstruction

2017 A2 IC1S Run8573 Ev4704 Top 500 Pixels

- Separate direct and reflected pulses into "snippets"
- Include reflected pulses into cross-correlation
- spline tables also support reflected rays
- Deep pulser distance reconstructed to 13\%
- systematic offset; statistical spread is much less

Double-Pulse Raytracing and Geometric Limitations

2D Idealized Example

I. Time difference of direct pulse to two antennas gives receipt angle of ray

2D Idealized Example

I. Time difference of direct pulse to two antennas gives receipt angle of ray

2D Idealized Example

time difference increases along ray

Different Antenna Depths: Reverse Raytrace

NB: assumes perfect measurement of receipt angle

Reflected Time Difference Lookup

Slope of curve maps time resolution to distance resolution - shallower is more challenging

Raytracing Launch Angle Difference

Smaller is better (more likely that both rays are near Cherenkov cone) But the real story is more complicated (and 3D!)

Double-Pulse Efficiency in Full Neutrino Simulation

Double-Pulse Selection Algorithm

Vertex Distribution

simulated neutrino energy $=10^{18} \mathrm{eV}$, antenna $\mathrm{z}=-50 \mathrm{~m}, \mathrm{I} 000$ events

Double-Pulse Efficiency vs. Station Depth

Shallower is better for detecting more double pulses

Summary and Next Steps

- Spline framework provides fast raytracing approximation
- enables all-sky, all-distance interferometric reconstruction
- Cross-correlation vertex directional resolution of $\mathrm{O}(\mathrm{I})$ degree
- Additional information from reflected ray enables distance reconstruction
- $\mathrm{O}(\mathrm{I} 0 \%)$ distance resolution at several km distance
- $10 \%-40 \%$ of simulated events have at least one double pulse
- To do: continue to evaluate antenna depth dependence
- double-pulse efficiency decreases with depth
- distance resolution increases with depth
- To do: full double-pulse vertex distance reconstruction using automated pulse snippet selection algorithm

Firn Boundary Spline Table

Firn boundary table: fast determination if source / receiver solution possible

Errors relative to raytracer

random sources in air

Gaussian Fit Differences Between Raytrace and Radiospline Delays, In Air

random sources in ice
Gaussian Fit Differences Between Raytrace and Radiospline Delays, In Ice

M. Beydler

Agreement of in-air tables excellent; some outliers in ice (known issue with spline fits)

radiospline Performance

Random source/target locations (2.3 GHz Core i7)

Method	Average computation time
	/ray (ms)

Spline lookup+evaluation is >500 times faster than full point-to-point raytrace calculation

Cherenkov Cone Angle Difference

double pulse efficiency estimate from simulation, no noise, cone angle selection

M-Y. Lu

