Neutrino Vertex Reconstruction in South Pole Ice

John Kelley for the ARA Collaboration ARENA 2018 Catania, Sicily

Optics in South Pole Ice

$$n(z) = n_{\text{deep}} + (n_{\text{surface}} - n_{\text{deep}}) e^{Cz}$$
 for $z < 0$
 $n_{\text{deep}} = 1.78, n_{\text{surface}} = 1.35, C = 0.0132 \text{ m}^{-1}$

- Index of refraction a function of depth (firn layer)
 - radio waves bend away from surface
- Multiple paths possible
 - direct and reflected signals
 - horizontal / surface propagation not considered in this model
- Neutrino vertex reconstruction needs accurate time delays from raytracing results
 - first step for neutrino energy, direction reconstruction

Spline-Fitted Raytrace Tables

- Smoothly interpolate many-dimensional tables with B-splines
- Technical challenges
 - discontinuities due to firn shadow, air/ice boundary cause ringing
 - reflected solutions in addition to direct ray
 - solution: cylindrical coordinates + multi-step table lookup

Example raytrace spline fits

- typical error is ~0.3 ns relative to full raytrace calculation
- spline evaluation is 500 times faster

Reconstruction of Simulated Events

$$P_{\Sigma}(\vec{r}) = \frac{1}{Z_L T} \int_0^T \sum_{i=1}^{N_A} \sum_{j=1}^{N_A} dt \cdot v_i(t + \tau_i(\vec{r})) v_j(t + \tau_j(\vec{r}))$$

- Cross-correlate over all sky using spline time delays for each direction
 - parallelized for GPUs
 with OpenCL
- Simulated 10¹⁸ eV neutrino vertex direction resolution: ~0.3 degree in zenith / azimuth

All-sky All-Distance Reconstruction

- Form cross-correlation skymap for all distances
 – "onion" reconstruction
- Distance reconstruction is very limited
 - curvature is negligible at O(km) distances

Top 500 Pixels - AraSim 10¹⁹eV Event

Deep Calibration Pulsers

Raytraced Radio Paths

Deep Pulser Event (IC-I to ARA-2)

both pulses observed: direct (upgoing) and refracted (downgoing)

J. Kelley, ARENA 2018

Directional Reconstruction of Pulser

- cross-correlation reconstruction of direct pulses
 - sum of CC pairs for all directions in sky
- O(degree) directional resolution
- Distance reconstruction very difficult due to nearplane-wave timing
 - solution: use reflected ray

M.-Y Lu

Double-pulse Distance Reconstruction

2017 A2 IC1S Run8573 Ev4704 Top 500 Pixels

- Separate direct and reflected pulses into ''snippets''
- Include reflected pulses into cross-correlation
 - spline tables also support reflected rays
- Deep pulser distance reconstructed to 13%
 - systematic offset; statistical spread is much less

Double-Pulse Raytracing and Geometric Limitations

2D Idealized Example

I. Time difference of direct pulse to two antennas gives receipt angle of ray

2D Idealized Example

Time difference of direct pulse to two antennas gives receipt angle of ray

2. Raytracing gives a path along which the vertex lies

2D Idealized Example

- . Time difference of direct pulse to two antennas gives receipt angle of ray
- 2. Raytracing gives a path along which the vertex lies
 - Time from direct to reflected pulse in a single antenna identifies vertex

Different Antenna Depths: Reverse Raytrace

J. Kelley, ARENA 2018

Reflected Time Difference Lookup

Slope of curve maps time resolution to distance resolution — shallower is more challenging

Raytracing Launch Angle Difference

Smaller is better (more likely that both rays are near Cherenkov cone) But the real story is more complicated (and 3D!)

Double-Pulse Efficiency in Full Neutrino Simulation

Double-Pulse Selection Algorithm

Vertex Distribution

Double-Pulse Efficiency vs. Station Depth

Shallower is better for detecting more double pulses

Summary and Next Steps

- Spline framework provides fast raytracing approximation
 - enables all-sky, all-distance interferometric reconstruction
- Cross-correlation vertex directional resolution of O(1) degree
- Additional information from reflected ray enables distance reconstruction
 - O(10%) distance resolution at several km distance
 - 10%-40% of simulated events have at least one double pulse
- To do: continue to evaluate antenna depth dependence
 - double-pulse efficiency decreases with depth
 - distance resolution increases with depth
- To do: full double-pulse vertex distance reconstruction using automated pulse snippet selection algorithm

Firn Boundary Spline Table

Firn boundary table: fast determination if source / receiver solution possible

Errors relative to raytracer

random sources in air

Gaussian Fit Differences Between Raytrace and Radiospline Delays, In Air

random sources in ice

Gaussian Fit Differences Between Raytrace and Radiospline Delays, In Ice

Agreement of in-air tables excellent; some outliers in ice (known issue with spline fits)

J. Kelley, ARENA 2018

radiospline Performance

Random source/target locations (2.3 GHz Core i7)

Method	Average computation time / ray (ms)
AraSim raytracer	0.21
radiospline	0.00037

Spline lookup+evaluation is > 500 times faster than full point-to-point raytrace calculation

Cherenkov Cone Angle Difference

double pulse efficiency estimate from simulation, no noise, cone angle selection

M-Y. Lu