Observation of radio signals from an electron beam using an ice target

The ARA calibration with the TA-ELS (ARAcalTA)

Performed in January, 2015 at TA site, Utah

Purpose: Better understanding of the radio emissions and our detector

We measured:

- Polarization
- Angular distribution
- Coherence

ARA Vpol antenna
150-850 MHz

Vpol antenna
Hpol antenna
LNA + filter (230-430 MHz)
Ice target
Antenna tower
Extendable: 2-12m

40 MeV electron beam line

TA LINAC

ARA Vpol antenna
40 MeV electron bunch train

~2ns

Ice block
electron excess

coherent radio wave from electron shower

40 m cables
Trigger + beam probe

Oscilloscope Rohde Schwarz
10GS/s

K. Mase
TA LINAC

- 40 MeV electron beam
- Typical electron number per bunch train: $2 \times 10^8 \rightarrow 30$ PeV EM shower (shower length ~20 cm)
- Pulse frequency: 2.86 GHz → pulse interval: 350 ps
- Bunch train width was optimized to ~2 ns
- Beam lateral spread: ~4.5 cm
- Trigger signal available
- Electron number can be monitored (~3%)

Measurements show:

- 2 ns
- ~10 bunches

Correlation → Electron number monitoring

2 $\times 10^8$ electrons → Enough signal strength

Cover wide range → Coherence
Ice target and the configurations

- 100 x 30 x 30 cm³
- Easily rotatable structure
- Easily movable on a rail
- Plastic holder for the ice has a hole underneath for the beam

Main data sets
- With ice (30°, 45°, 60°)
- No target

Thermometer

Dry ice (on side)

Ice target

1 m

40 MeV electron beam line

Cherenkov angle in ice (56°)

antenna height [m]

Index of Tower Height

- 17 m
- 14 m
- 10 m

Antenna

Angle Relative to Beam (deg.)

Ice inclination angle (α)

Observation angle

Emission angle

α = 60°

α = 30°
Expected radio emissions

- Several radio emissions are expected
 - Askaryan radiation
 - In ice
 - Wide angular distribution due to the short tracks
 - Peak at more horizontal direction than the Cherenkov angle (56°)
 - Transition radiation
 - At air/ice boundary
 - Peak at two Cherenkov angles (∼1° / 56°)
 - Sudden beam appearance radiation
 - When beam appears
 - Forward emission (Cherenkov angle is ∼1°)

- Originated from the same mechanism: Lienard-Wiechert potential (for the moving particle)

\[
\Phi(\vec{x},t) = \left[\frac{e}{(1 - n\vec{\beta} \cdot \hat{r})R} \right]_\text{ret}, \quad \vec{A}(\vec{x},t) = \left[\frac{e\vec{\beta}}{(1 - n\vec{\beta} \cdot \hat{r})} \right]_\text{ret},
\]

\[
E = -\nabla \phi - \frac{\partial A}{\partial t}
\]
Simulation

Electron beam (Geant4)
Including accelerator configurations

E-field calculation

Ray trace

tables made

E-field

Detector response

Based on the classical EM theory (Lienard-Wiechert potentials)

Middle point method (PRD 81, 123009 (2010))

Thanks to Anne Zilles for sharing her code for the implementation

Endpoints method (PRE84, 056602 (2011))

Obs. angle 0° (no target) at 1 m

Middle point

Endpoints
Sudden beam appearance signal

1. AirRadar

2. ARAcalTA

3. IceRadar

4. Konan

- Four independent experiments performed at the TA site
- All experiments clearly observed strong signals when beams appear
Frequency spectrum of the sudden beam appearance signals

- First result to show the consistency with the expectation for the wide frequency range
- Radiation well understood
- Applicable for the UHECR detection
Angular distribution of the sudden beam appearance signals

- Reasonable agreement between data and simulation (XFDTD)
- Radiation and our detector are well understood (level of 30%)
Systematic uncertainties

<table>
<thead>
<tr>
<th>Item</th>
<th>Data</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical error</td>
<td>±8%</td>
<td>±10%</td>
</tr>
<tr>
<td>Stability</td>
<td>±19%</td>
<td>-</td>
</tr>
<tr>
<td>Bunch width</td>
<td>-</td>
<td>-14% +17%</td>
</tr>
<tr>
<td>Sum</td>
<td>±21%</td>
<td>-17% + 20%</td>
</tr>
</tbody>
</table>
Signals with an ice target

- Reasonable agreements between data and simulation
- Less Hpol signal → high polarization
Polarization and coherence

All signals show relatively high vertical polarization

Reasonable coherence

Similar values for all the configurations

Configuration: Ice 30°, obs. angle 0°, Vpol

Slope index: 1.86 ± 0.01

Ice target 0.92 ± 0.03
Simulation 1.00 ± 0.01
No target 0.82 ± 0.03
Angular distribution

- Reasonable agreements
- Detector effects included in simulation
- Need to be changed to radio energy vs emission angle

Observed radio energy @ 1m [J]

Preliminary

Solid: Data
Dashed: Simulation

θ_c(30°)
θ_c(45°)
θ_c(60°)

Observed observation elevation angle [deg.]
Each component

Configuration:
Ice 60°, obs. angle: 29°
Summary

- Performed experiments using an accelerator to verify the understanding of the radio signals as well as our detectors
- Clearly polarized and coherent signals observed
- Observed signals are consistent with the expectation within the uncertainty level of 30%
- Understanding the emission further by checking each component
- Would be important for sudden deaths of air showers
Backups
Askaryan effect

1962: Askaryan predicted **coherent radio emission** from excess negative charge in an EM shower

→ **Askaryan effect**

- Small λ add destructively
- Large λ add coherently
- Shower size $\ll \lambda$ to be coherent
- Dense material better

Cerenkov emission (Frank-Tumm result)

\[
\frac{d^2W}{dvdl} = \frac{4\pi^2\hbar}{c} \alpha z^2 \nu \left(1 - \frac{1}{\beta^2 n^2}\right)
\]

in case N electrons,

- $z=1$ (not coherent) → $W \propto N$
- $z=N$ (coherent) → $W \propto N^2$

Power $\propto \Delta q^2 \propto E^2$, thus prominent at ultra-high energy ($>\sim 100$ PeV)
Verification of the Askaryan effect

✧ Askaryan effect has been verified using an accelerator
 ✧ 2001: firstly confirmed at SLAC with Silica sand (D. Saltzberg et al.)
 ✧ 2005: confirmed with salt (P. Gorham et al.)
 ✧ 2007: confirmed with ice (P. Gorham et al.)

Saltzberg et al. PRL 2001

Gorham et al. PRL 2007

Gorham et al. PRD 2005
Comparison of waveforms and frequency spectrum

No target
- Obs. angle 0°
- Data
- Simulation

Ice target (30°)
- Obs. angle 0°
- Data
- Simulation

Reasonable agreements without scaling!
Detector simulation

Verify the understanding the emission mechanisms and detector responses, comparing with data
Cable / connector attenuation correction

Faraday Cup (for the electron charge measurement)

Short cables / connectors
(~3m, up to 500 MHz)

Long cables (40m, high frequency adapted)

TA LINAC

Counting house

Found out the TA short cable attenuate signal significantly

The emission power is proportional to the charge square → correction of \(x^{2.1} (1.46^2)\)
Ray trace for emissions in ice

- Refracted at top
- Refracted at side
- Refracted at side
- Reflected at bottom + refracted at side

Ice 30 deg.

- Complicated...
- Need a full simulation (with lookup tables)
- Relatively large signal observed
- Less Hpol signal → high polarization
- Relatively flat frequency spectrum → Indicating something else from Askaryan radiation

Configuration:
Ice 30°, obs. angle: 0°

- Relatively large signal observed
- Less Hpol signal → high polarization
- Relatively flat frequency spectrum

Measured waveform and the frequency spectrum
Ray traces

More shadowing effect for 30 deg. and 45 deg. above observation angle of 30 deg.

More signals for 30 deg. and 45 deg.
Properties of the signals

- **Polarization**
 - With ice target: 0.92 ± 0.03
 - No target: 0.82 ± 0.0

- **Polarization angle**

- **Coherence**
 - Slope index: 1.86 ± 0.01

- All signals show high vertical polarization
- No target data shows slightly less polarization
- High coherence, but not full

Configuration:
Ice angle 30°, obs. angle: 0°
Simulation

- Electron beams simulated by Geant4
- Accelerator configurations included
- E-field calculated by the middle point method (ZHS method, PRD 81, 123009 (2010)) and the endpoints method (PRE84, 056602 (2011))

→ Both methods give the same results

Bunch structure
- 2 ns

Lateral distribution
- 4.5 cm

Obs. angle 0° (θ = 60°) at 1 m

Emission in ice

Emission in air

Beam pipe
- 20 cm hole
- 40 MeV electrons

Electron Light Source facility
- Metal
Reproducibility

The reproducibility was checked with data with the same configuration:

2015/01/14 Run1 (ice 60 deg., 0m)

2015/01/14 Run4 (ice 60 deg., 0m)

The difference in the amplitude is 5% → 10% in power (Vol)
Stability and far field confirmation

- The stability with the same configuration: 5% in amplitude

- The antenna mast was intentionally rotated by ~15 deg.

- The signal amplitude decreased proportionally with the distance change. → Far field confirmation (3.0 ns time delay → 12% distant → 12% amplitude decrease)

- Time difference from the expectation was checked for each configuration.

- The spread is 1.9 ns → 9° rotation → 8% in amplitude

- The overall systematic uncertainty in power: 19%
Signals observed!

~500 mV
Polarization

Data Simulation (Askaryan)
Simulation with sys. uncertainty
No target

- Data: 0.92 ± 0.03
- Simulation: 1.00 ± 0.01
- No target: 0.82 ± 0.03

All signals show high vertical polarization
Data is off from simulation

Configuration: Ice 30°, obs. angle 0°, \(V_{pol} \)}
Coherence

Slope index: 1.86 ± 0.01

High coherence, but not full

High coherence over the main waveform

Configuration: Ice 30°, obs. angle 0°, Vpol

Data

Simulation

x6 for simulation
- 40 MeV electron beam
- Maximum electron number per bunch: 10^9
- Pulse frequency: 2.86 GHz → pulse interval: 350 ps
- Bunch duration is 20 ns
- Output beam width: 7 mm
- Trigger signal available
The ARA system

- DAQ at surface
- in-ice
- optical fiber (~200 m)
- ~40 dB
- DAQ box

- LNA
- band-pass filter
- ~40 dB
- Antennas

- V-pol antenna
 - Bicone
 - 150-850 MHz

- H-pol antenna
 - Quad-slot cylinder
 - 200-850 MHz
 - Gain similar to dipole (+2 dBi)
Schematic of the ARA system

Antenna

V-pol

H-pol

band-pass filter

~40 dB

LNA

in-ice

optical fiber signal transfer system

DTM

FOAM

optical fiber (200m)

DAQ at surface

DAQ box

K. Mase
Antennas

V-pol antenna
Bicone
150-850 MHz

H-pol antenna
Quad-slot cylinder
200-850 MHz
Gain similar to dipole (+2 dBi)
Antenna calibration
Antenna transmission coefficient

- Measured by network analyzer
- Simulation with XFdtd
- Measurement consistent with simulation
- The difference of top and bottom antenna due to pass-through cables