Towards real-time cosmic-ray identification with the Low Frequency ARray

Catania, 12th - 15th June 2018
Towards real-time cosmic-ray identification with the LOw Frequency ARray

The LOw Frequency ARray

50 stations in Northern Europe
6 stations in the SuperTerp, the densest region
For each station 96 LBA (10-90 MHz) and 96(48) HBA (110-240 MHz)

Observations are driven by astronomical targets (ToOs)

When a CR trigger occurs, the time buffer of the 24 closest stations is downloaded for the off-line analysis
20 scintillator detectors (~ 1 m² each) located in the SuperTerp:

- trigger for LOFAR CR detection
- position and arrival direction measurement
- energy measurement between $10^{16} – 10^{19}$ eV
- area covered ~ $7 \cdot 10^4$ m²

Δθ < 0.7°

ΔN_{ch}/N_{ch} < 32%

Δ(x, y) < 6 m

S. Thoudam et al., Nucl. Inst. Meth. A 767, 339, 2014
1) **broadening the LOFAR energy range**
LOFAR stations are potentially able to study CRs above 10^{18} eV, but the collecting area is a serious constraint. At the present time only CRs falling within the Superterp are detected. By implementing a self-trigger system on the whole LOFAR array we can increase almost 50 times the collecting area.

2) **being the precursor for future radio detectors**
Implementation of self-trigger system is crucial not only for LOFAR, but for all future radio-based cosmic-ray experiments, which could benefit from LOFAR experience.

3) **contributing to the survey of other radio transients**
LOFAR is carrying out surveys for radio transients (e.g. FRB) and atmospheric phenomena (e.g. electric fields during thunderstorms), which could benefit from a cosmic-ray self-trigger system.
Performance requirements

Facts

➢ Cosmic-ray signal is very short (10-100 ns) and very rare by assuming an average event rate of ~1 event per hour at $E > 10^{16}$ eV, the time window ratio is about 1 over 10^{11}

➢ LOFAR is not in a radio-quite area, RFI can mimic CR radio signals commercial 88-108 MHz FM emitters can overspill in the 30-80 MHz band, airplanes traffic, electric sparks from close-by electric fences, etc.

➢ LOFAR capability of downloading the buffer data is limited large deadtime is generated every time antennas time-series data are downloaded

Therefore

1) RFI suppression to about 1 fake trigger per hour is crucial

2) High CR selection efficiency for $E > 10^{17}$ eV is very important

3) Trigger algorithm has to fit with current LOFAR hardware and software architecture
The developed self-trigger algorithm

Self-trigger scheme:

- Since HBAs have a limited field of view (~15 deg), only LBAs are considered.
- Both “LBA outer” and “LBA inner” configuration have been considered for developing the self-trigger algorithm.
- Each LOFAR station is independently investigated, no correlation between neighboring stations is used. Anyhow, one triggered station in the Superterp will trigger all other Superterp stations.
- In order to generate a trigger on one station, radio pulses must pass at first a selection phase, and then a rejection phase which is aimed at discarding RFI pulses.
The developed self-trigger algorithm

Radio-pulse selection criteria:

➢ for each antenna the two polarizations are evaluated independently

➢ At least 23 antennas along one polarization over a given threshold, within a waiting time window of 30 (LBA outer) or 20 (LBA inner) ns

RFI rejection criteria:

➢ signal time length on the whole station must be shorter than 300 (LBA outer) or 75 (LBA inner) ns. The signal time length is defined as the time interval during which at least 3 antennas are above the threshold

➢ radio pulse arrival elevation angle must be larger than 30°

➢ if two consecutive pulses are identified within 5 μs, both pulses are rejected
Testing the self-trigger algorithm

Method 1 – raw-data downloaded following a LORA trigger:

- When LORA generates a trigger, the time-series of all the antennas in the central stations are downloaded. The time window is ~2.2 ms, centered on LORA trigger time
- Good for evaluating CR selection efficiency
- Evaluation of RFI-rejection efficiency is limited by the total length of the downloaded time $O(10 \text{ s})$

Method 2 – self-trigger acquisition run without RFI rejection:

- Trigger is generated internally for each individual station, ~500 μs time-series is downloaded
- No RFI-rejection \rightarrow dataset is made almost exclusively by RFI pulses
- Test run length $O(24 \text{ h})$ \rightarrow best method for evaluating RFI-rejection efficiency
Testing the self-trigger – method 1

Stations configuration: LBA outer
Total independent real time: 8.9 s Total real time: 118.7 s

THR = 3 RMS
total number of stations triggered by CR signal = 1520

THR = 4 RMS
total number of stations triggered by CR signal = 898

THR = 5 RMS
total number of stations triggered by CR signal = 598

THR = 10 RMS
total number of stations triggered by CR signal = 191

Note: LBA inner is not shown but results are similar

Towards real-time identification of cosmic rays with LOFAR

Arena 2018
Stations configuration: LBA outer
Total independent real time: 8.9 s Total real time: 118.7 s

THR = 3 RMS
total number of stations triggered by CR signal = **1520**
fraction of stations triggered by CR signal and vetoed = 182 / 1520 = **12%**

THR = 4 RMS
total number of stations triggered by CR signal = **898**
fraction of stations triggered by CR signal and vetoed = 41 / 898 = **5%**

THR = 5 RMS
total number of stations triggered by CR signal = **598**
fraction of stations triggered by CR signal and vetoed = 17 / 598 = **3%**

THR = 10 RMS
total number of stations triggered by CR signal = **191**
fraction of stations triggered by CR signal and vetoed = 3 / 191 = **2%**

Note: LBA inner is not shown but results are similar
Testing the self-trigger – method 1

Stations configuration: LBA outer
Total independent real time: 8.9 s Total real time: 118.7 s

THR = 3 RMS
total number of stations triggered by CR signal = **1520**
fraction of stations triggered by CR signal and vetoed = 182 / 1520 = **12%**
Events with at least one RFI signal triggered after RFI rejection= **5**

THR = 4 RMS
total number of stations triggered by CR signal = **898**
fraction of stations triggered by CR signal and vetoed = 41 / 898 = **5%**
Events with at least one RFI signal triggered after RFI rejection= **5**

THR = 5 RMS
total number of stations triggered by CR signal = **598**
fraction of stations triggered by CR signal and vetoed = 17 / 598 = **3%**
Events with at least one RFI signal triggered after RFI rejection= **4**

THR = 10 RMS
total number of stations triggered by CR signal = **191**
fraction of stations triggered by CR signal and vetoed = 3 / 191 = **2%**
Events with at least one RFI signal triggered after RFI rejection= **2**

Note: LBA inner is not shown but results are similar
Testing the self-trigger – method 1

Stations configuration: LBA outer
Total independent real time: 8.9 s
Total real time: 118.7 s

THR = 3 RMS
Total number of stations triggered by CR signal = **1520**
Fraction of stations triggered by CR signal and vetoed = 182 / 1520 = **12%**
Events with at least one RFI signal triggered after RFI rejection = **5**

THR = 4 RMS
Total number of stations triggered by CR signal = **898**
Fraction of stations triggered by CR signal and vetoed = 41 / 898 = **5%**
Events with at least one RFI signal triggered after RFI rejection = **5**

THR = 5 RMS
Total number of stations triggered by CR signal = **598**
Fraction of stations triggered by CR signal and vetoed = 17 / 598 = **3%**
Events with at least one RFI signal triggered after RFI rejection = **4**

THR = 10 RMS
Total number of stations triggered by CR signal = **191**
Fraction of stations triggered by CR signal and vetoed = 3 / 191 = **2%**
Events with at least one RFI signal triggered after RFI rejection = **2**

Note: LBA inner is not shown but results are similar
Energy threshold varies accordingly to the single antenna trigger threshold

Full efficiency between 10^{17} and $10^{17.5}$ eV according to the set threshold
Within 200 m from CR shower axis, ~20% trigger probability is achievable. That is comparable to present off-line detection efficiency.
Testing the self-trigger – method 2

Stations considered: Superterp (i.e. CS002-7)
Stations configuration: LBA outer
Run length: 24 h Total real time after deadtime correction: ~12 h

THR = 3 RMS

total number triggers = 639

THR = 4 RMS

total number triggers = 620

THR = 5 RMS

total number triggers = 593

THR = 10 RMS

total number triggers = 268
Testing the self-trigger – method 2

Stations considered: Superterp (i.e. CS002-7)
Stations configuration: LBA outer
Run length: 24 h Total real time after deadtime correction: ~12 h

THR = 3 RMS
Total number triggers = 639
Triggers after RFI rejection = 3
(Note: value affected by acquisition threshold)

THR = 4 RMS
Total number triggers = 620
Triggers after RFI rejection = 10

THR = 5 RMS
Total number triggers = 593
Triggers after RFI rejection = 10

THR = 10 RMS
Total number triggers = 268
Triggers after RFI rejection = 10
Testing the self-trigger – method 2

Stations considered: Superterp (i.e. CS002-7)
Stations configuration: LBA outer
Run length: 24 h Total real time after deadtime correction: ~12 h

THR = 3 RMS

- total number triggers = 639
- triggers after RFI rejection= **3**

THR = 4 RMS

- total number triggers = 620
- triggers after RFI rejection= **10**

THR = 5 RMS

- total number triggers = 593
- triggers after RFI rejection= **10**

THR = 10 RMS

- total number triggers = 268
- triggers after RFI rejection= **10**

Time distribution, all stations

Time difference distribution, all stations

\[\tau \sim 60 \text{ s} \]
A most-likely airplane RFI trigger

Sampled value (RMS unit)

-15
-10
-5
0
5
10
15

Time (ns)

164.5
165
165.5
166
166.5

×10^3

Antenna 0, dipole 0
Antenna 0, dipole 1

Towards real-time identification of cosmic rays with LOFAR

Arena 2018
After correcting for the dead-time, we have found one trigger per hour we met our goal!

Trigger time distribution is not homogeneous during the 24 hours

- Airplane traffic, atmospheric effects?

We found no signal in coincidence with LORA, nor CR candidates

- 20 collected LORA triggers, but only one above 10^{17} eV arriving from South which is the most unfavorable arrival direction ($v \times B$ effect)
- given the circumstances, it is reasonable we didn't find any CR candidate
- an additional longer observation has been requested
Conclusions and outlook

➢ We developed a self-trigger algorithm for individual LOFAR stations, based on the single antenna baseline fluctuations, on the pulse arrival direction, and on its duration
➢ The algorithm shows good CR efficiency (up to 30% within 200 m) and very good RFI-trigger rejection (less than 1 event per hour)
➢ It is possible to implement the new self-trigger algorithm without any change to the current LOFAR instrumentation
➢ A more advanced self-trigger algorithm with frequency-spectrum analysis has been developed, but it requires hardware modification → postponed to LOFAR 2.0

Future plans

➔ implementing in coordination with ASTRON the self-trigger algorithm on LOFAR hardware at the station CPU level
➔ Studying LOFAR CR performances in Single-station mode for extending LOFAR collecting area to all LOFAR stations
Spare Slides
Method 1 – Disentangling CR - RFI triggers

Time window of the downloaded data-series following a LORA trigger

\[\Delta t = 12.5 \mu \text{s} \]

- Radio pulses falling in the CR area are considered as generated by the CR cascade
- Radio pulses falling in the RFI areas are considered due to RFI spurious signals
The present LOFAR self-trigger system

A very rough trigger algorithm is currently installed, and has been used for long-run test runs for estimate RFI-rejection efficiency

Trigger criteria:

➢ for each antenna the two dipoles are evaluated independently
➢ majority of N dipoles over a given threshold, on a coincidence time window T (computed from the first threshold overpassing)

RFI rejection criterion:

➢ radio pulse arrival direction must be within the elevation range E

Performances:

➢ trigger rate spanning between 0.01 and 1 Hz, accordingly to N, T, and E
 ➢ trigger population dominated by RFI pulses
 ➢ very low effective duty-cycle because of the data downloading time