

Properties of the Lunar Detection Mode for ZeV Scale Particles with LOFAR

p, v, X

T. Winchen, A. Bonardi, S. Buitink, A. Corstanje, H. Falcke, B. M. Hare, J. R. Hörandel, P. Mitra, K. Mulrey, A. Nelles, J. P. Rachen, L. Rossetto, P. Schellart, O. Scholten, S. ter Veen, S. Thoudam, T.N.G. Trinh

ARENA 2018

Europear Research

tobias.winchen@vub.be

The LOw Frequency ARray

A Fully Digital Radio Telescope

Conventional radio telescope:

Mechanically point (few) directional antennas into observing direction + combine signals

Observe only one direction at a time

Digital radio telescope:

Many omni-directional antennas digitally combine signals according to direction

Observe multiple directions simultaneously

Observation Strategy

- HBA Antennas have optimal frequency range
 Form multiple beams on the Moon
 Search for ns pulses in time-series
 Anti coincidence to suppress RFI
- Analyze Faraday rotation and dispersion to validate lunar origin

Challenge:

02

LOFAR designed to integrate flux, user access only to processed signal

- Reconstruct ns time series from processed signal for trigger
- Use buffered traces for analysis

Online Data Analysis

DRAGNET Cluster

- Designed for Pulsar searches with LOFAR
 - (J. Hessels et al., Amsterdam)
- 23 worker nodes:
 - 16 CPU cores (2x Xeon E5-2630v3 (2014))
 - 128 GiB ram
 - 4x TitanX GPU
 - 56 Gbit/s Infiniband connection to LOFAR
 - = 92 High-End GPUs + CPUs ; 0.5 PetaFLOP/s
 - + Performance of prototype implementation allows full coverage of moon
 - Bandwidth limited to processing data of 5 / 24 stations
 - \rightarrow Implications on Beamshape + Performance

- Strong suppression beyond 3 deg from moon
- Complex side-lobes on moon

Tobias Winchen - Lunar Detection of Cosmic Particles

- - - - - - 0 - - - - - - 0 Gain [dB]

12

Full Simulation

Simulated Pulse from Moon Center

Simulated Pulse from Horizon (RFI)

RFI visible in Data

- 0.14s of TBB Data (not on Moon)
 - Processed by Analysis/Simulation pipeline

Tobias Winchen - Lunar Detection of Cosmic Particles

Threshold Trigger

Limit trigger rate to 1/min to reduce data transfer

Ionospheric Dedispersion

- EM Pulse from Moon pass through lonosphere
- Frequency dependent dispersion
- Dispersion depends on electron content of ionosphere (STEC)

$$\Delta t(\nu) = 1.34 \frac{STEC}{\text{TECU}} \left(\frac{\nu}{\text{Hz}}\right)^{-2} \text{s}$$

 $1 \text{ TECU} = 10^{16} \text{ electrons} / \text{m}^2$

STEC not known exactly → Test as many STEC-Values as possible

DeDispersion – STEC Accuracy

- Simulated STEC varies distributed around 20 TECU with spread 1 TECU
- Always corrected for 20 TECU
- 1 TECU uncertainty on lonosphere corresponds to roughly factor 2 in E-Field threshold for 100% efficient reconstruction
- The minimum detectable field is not affected that significantly
- We probably can know the STEC better than 1 TECU (~0.1 TECU reported by Zelle et al, 2015.)

RFI Suppression: ('Anti - Coincidence')

Tobias Winchen - Lunar Detection of Cosmic Particles

RFI Suppression: ('Anti - Coincidence')

Signal:

Pulse from random* position on Moon

- + 20 +/- 1 TECU DeDispersion
- + TBB background (no RFI)

Background:

Strong pulse from horizon

- + DeDispersion 20 TECU
- + TBB background (no RFI)

Strong signals might trigger all beams

* isotropically in solid angle covered by Moon

- pdf of possible impact angles not included!

Trigger in Every Beam

Good signal / background separation for strong signals → Anti-coincidence does not limit energy range!

Tobias Winchen - Lunar Detection of Cosmic Particles

Expected Sensitivity (200h)

Difference to previous values (Bray 2016):

- 5 instead of 24 stations
- Increased bandwidth
- Reduced trigger threshold
- Full detector simulation instead of semi analytical parametrization

Caution: Still relies on semi-analytical model for pulse escape from moon

Tobias Winchen - Lunar Detection of Cosmic Particles

Conclusions

Search Cosmic Particles on ZeV scale via Lunar-Askaryan-Effect with LOFAR (and SKA in future)

- Full Simulation of Process + Prototype Implementation
 - Analysis + Simulation software ready:
 - PPF Inversion, Dedispersion, Beamforming, Filter
 - Preliminary design choices for station selections, etc.
 - Design of trigger + sensitivity calculation (In progress)
- Coincidence trigger imposes no upper limit on detectable pulses
- Including regime with low efficiency reduces energy threshold for limits

Outlook

- Implementation of Online System in progress
- First commissioning data (1 min) taken (analysis ongoing)
- Further commissioning runs + integration of software in LOFAR systems in Summer 2018
- Proposal for observation runs 2018/2019 (LOFAR cycle 11+)

Gefördert durch
Deutsche
Forschungsgemeinschaft

tobias.winchen@vub.be

Backup

Pulse Reflected at High Frequencies

- Radiation emitted in Cherenkov cone
- Cherenkov angle == Angle of total reflection
- Upgoing shower required / rely on surface roughness

Pulse Escapes at Low Frequencies

- Cherenkov cone is broader at low frequencies
- Also downgoing showers detectable
- Optimum in 100 200 MHz range (Scholten et al. 2006)

Inversion of Polyphase Filter

- Filter to decompose signal into subbands
- FFT signal is smeared out over neighboring frequencies
- Efficient filtering with PPF
 + avoids frequency smearing
 - Reduces time resolution
 from 5 ns to ~5 us
- Inversion with small error possible, but computationally intensive:
 O(1000) GFLOP / s / beam
- As much computing power as possible needed for dedispersion + trigger

Not available on regular system, requires additional computing power

Use DRAGNET, CPU/GPU cluster for pulsar searches

Polyphase Filter

Inverse Polyphase Filter (PPF⁻¹)

$$\mathcal{F}^{-1}(\tilde{y}) = y$$

Direct inversion of FIR filter

$$H^{-1}y = \hat{x}$$

Inverse does not exists as H is not square

Approximate inverse

 $Gy\approx \hat{x} \qquad GH\approx I$ Supposed to be numerically unstable / produces artifacts (spikes)

Robust approach: Solve linear system

 $H \hat{x} = y \label{eq:H}$ using iterative least squares (LSMR)

$$\min_{\hat{x}} \|H\hat{x} - y\|$$

Tobias Winchen - Lunar Detection of Cosmic Particles

Tobias Winchen - Lunar Detection of Cosmic Particles

Dedispersion

Recovery of 99% of amplitude possible PPF results in 30% fluctuations with small TEC values \rightarrow need to scan multiple TEC values

Preliminary Station Selection

- Available bandwidth to DRAGNET limited to
 - ~ 5 stations

28

Choose FULL stations as grating lobes have only weak influence on analysis beams

Preliminary set:

CS003, CS013, CS030, CS031, CS301

Analysis Beams

LOFAR Network

31

Tobias Winchen - Lunar Detection of Cosmic Particles

Performance Prototype Pipeline

Beamforming	: CPU
PPF Synthesis	: GPU (160% Realtime)
Dedispersion	: GPU

DataChunk 1 DataChunk 2 **DataChunk 3 Stations** . . . DataChunk 1 DataChunk 2 DataChunk 3 CPU Beamforming **Beamforming Beamforming** . . . DataChunk 1 DataC **GPU** DD **PPF** Synthesis PPF Sy DataChunk 2 GPU **PPF** Synthesis

Time

Angular Resolution of Lunar Mode

- Limit observations to rim
- Possible Incident angles yield $\sim 5^{\circ}$ resolution
- Explicit reconstruction should do better

Challenge HBA Calibration

Analog Beamforming of HBA Antennas to Tile
 Gain pattern (of tile) varies between events
 (beam direction) and stations (orientation of tiles)

Calibration

- \rightarrow Frequency dependency of same order of uncertainty
- \rightarrow Use average value independent on frequency to simplify procedure

Next step: Investigate directional dependency using constant value for electronic noise

Differences between Stations

Directional Consistency

Color = Calibration value for event in direction

There is some directional structure in calibration constants \rightarrow Look at variation between nearby beam directions

Directional Consistency

- Exclude values from celestial pole
- Histogram difference between calibration constant of events as function of angular distance

Some events with large discrepancy,

Most close-by calibration constants within +/- 8% of each other

Conclusion: HBA calibration

- HBA Calibration on Event-Event basis
- Uncertainty of calibration +/- 36 % (in Power)
 →+/- 30% from frequency dependency
 →+/- 18% from difference between stations
 →+/- 10% based on variation of similar directions