

A view from the top

All results at: http://cern.ch/go/pNj7

Outline

(Beyond) Standard Model tttt Theory

Overview of Experimental Measurements

Focus on latest result:

CMS same-sign and multilepton search, with 35.9 fb⁻¹ at 13 TeV

Disclaimer:

Many BSM theories predict boosted tttt or tttt+MET

The featured result grew out of a tttt+MET search for gluino pair-production
 I will focus on SM-like tttt production (at rest)

Intro to (B)SM tttt Theory

Basic question: what is the tttt cross section?

Scale/PDF choices lead to different NLO/LO k-Factors:

- [1] 14 TeV, NLO:
 - Scale choice ($\mu = 2m_t \text{ vs } H_T/4$) gives 20% (10%) variations at LO (NLO)
 - NLO/LO k-factor: 1.27 (1.21) for $\mu = 2m_t (H_T/4)$
 - $\sigma_{\text{NLO}}(\text{tttt}) = 15.3^{+4.0}_{-3.8} \text{ or } 16.8^{+4.0}_{-4.2} \text{ fb}$

[2] 13 TeV, NLO

- μ = H_T/2. LO and NLO results based on NLO PDF
- NLO/LO k-factor: 2.04
- $\sigma_{\rm NLO}(\rm tttt) = 9.2^{+2.9}_{-2.4} \, \rm fb$

[3] 13 TeV, LO including Higgs contribution and interference

- $\mu = MG default$
- $\sigma_{LO}(tttt) = 9.6^{+3.9}_{-3.5}$ fb
 - —> With 1.27 k-factor from [1]: $\sigma_{LO}(tttt)^*k = 12.2^{+5.0}_{-4.4}$ fb

Summary:

- 1) Calculation is not straightforward
- 2) Measurement might shed some light, and encourage investigation
- 3) NLO calculation including Higgs contributions is missing

[1] G. Bevilacqua and M. Worek, JHEP 1207, 111 (2012) [arXiv:1206.3064].

[2] J. Alwall et al., JHEP 1407, 079 (2014) [arXiv:1405.0301]

[3] Q.-H. Cao, et al., Phys. Rev. D 95 (2017) 053004 [arXiv:1602.01934] 5

Additional contributions from off-shell Higgs

σ (tttt) includes diagrams with off-shell Higgs bosons

Small, but proportional to 4th power of top-Higgs coupling

- Unique: production and decay through same Yukawa
- $|y_t| > |y_t^{SM}|$ would significantly enhance tttt cross section

$$\kappa_t \equiv y_{Htt} / y_{Htt}^{\rm SM}$$

Additional contributions from off-shell Higgs

σ (tttt) includes diagrams with off-shell Higgs bosons

Small, but proportional to 4th power of top-Higgs coupling

- Unique: production and decay through same Yukawa
- $|y_t| > |y_t^{SM}|$ would significantly enhance tttt cross section

Proposal from Cao et al. [PRD 95, 053004 (2017) and FCC Yellow Report]

Combine tttt and ttH measurements to constrain total Higgs width, assuming SM branching ratio to $\mu\mu/ZZ/\gamma\gamma$, or vice-versa

 $\sigma(pp \to t\bar{t}H \to t\bar{t}xx)$ = $\sigma^{\text{SM}}(pp \to t\bar{t}H \to t\bar{t}xx) \times \kappa_t^2 \kappa_x^2 \frac{\Gamma_H^{\text{SM}}}{\Gamma_H}$

$$\kappa_t \equiv y_{Htt} / y_H^{SI}$$

Additional contributions from off-shell Higgs

σ (tttt) includes diagrams with off-shell Higgs bosons

Small, but proportional to 4th power of top-Higgs coupling

- Unique: production and decay through same Yukawa
- $|y_t| > |y_t^{SM}|$ would significantly enhance tttt cross section

Proposal from Cao et al. [PRD 95, 053004 (2017) and FCC Yellow Report]

Combine tttt and ttH measurements to constrain total Higgs width, assuming SM branching ratio to $\mu\mu/ZZ/\gamma\gamma$, or vice-versa

 $\kappa_t \equiv y_{Htt} / y_{Htt}^{SM}$

 $\operatorname{comb}_{t \bar{t} H}$

Problem 2: shape of signal mass peak depends on coupling

Signal shape in m_{tt} for different assumptions of signal strength

Constraints from $pp \rightarrow H/A \rightarrow tt$

ATLAS search for m_{tt} features in 8 TeV data [CONF-2016-073]

Exclude $m_{A(H)}$ ~500 GeV for very small values of tan β <0.85 (0.45)

• Expected sensitivity for $tan\beta \approx 1.2$ (1.0).

Search loses sensitivity quickly as higher tanß reduces cross section and narrows width

- Searches for this signature are constrained by systematics on reconstructed m_{tt}
- Difficult to probe 350-450 GeV region due to background shape

H/A associated production

Proposal by N. Craig et al [arXiv:1605.08744]

2HDM predicts enhancement in several top-associated production channels Can easily probe down to 2^{*}m_t, where enhancement of σ_{tttt} is a factor of > 2.5

First: can set limits based on cross-section enhancement Next (300 fb⁻¹): can start studying kinematics

 $\mathcal{O}_{R} = (\bar{t}_{R}\gamma^{\mu}t_{R})(\bar{t}_{R}\gamma_{\mu}t_{R})$ nent $\mathcal{O}_{L}^{(1)} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})(\bar{Q}_{L}\gamma_{\mu}Q_{L})$ $\mathcal{O}_{L}^{(8)} = \left(\bar{Q}_{L}\gamma^{\mu}T^{A}Q_{L}\right)\left(\bar{Q}_{L}\gamma_{\mu}T^{A}Q_{L}\right)$ $\mathcal{O}_{B}^{(1)} = \left(\bar{Q}_{L}\gamma_{\mu}Q_{L}\right)\left(\bar{t}_{R}\gamma_{\mu}t_{R}\right)$ $\mathcal{O}_{B}^{(8)} = \left(\bar{Q}_{L}\gamma_{\mu}T^{A}Q_{L}\right)\left(\bar{t}_{R}\gamma_{\mu}T^{A}t_{R}\right)$

Overview of Experimental Measurements

Overview of tttt searches

All-hadronic

Powerful in boosted searches for new physics, not yet explored at rest

1 lepton and opposite-sign 2 lepton

Large tt pair-production background

2 same-sign or ≥ 3 leptons

Comparable branching to OS2L, reject top pairs

W

 $e/\mu/\tau/u/c$

v/d/s

 $\mathbf{x4}$

CMS 1L and opposite-sign 2L analyses

Huge tt background motivates interesting strategies

Reconstruct hadronic tops with a BDT, trained on tt:

• BDT1 variables: m(jj), m(jjj), b-tag disc.(j), $\Delta R(jjj, "W")$, $\Delta R(jjj, "b")$, $p_T^{jj}/(\Sigma p_T^j)$ Use kinematic variables (including BDT1) to train a BDT2: tttt vs tt

Classify according to N(jets), N(b-jets), BDT2

- O(100) signal regions
- Take advantage of high-statistics bins to constrain tt shape systematics

[arXiv:1702.06164]. Results shown on previous slide.

ATLAS analyses

Simpler analysis strategy for single lepton [ATLAS-CONF-2016-020]

Define SRs using: N_{jets} , N_b , H_T , MET

- Upper Limit with 3.2 fb⁻¹: $21*\sigma^{SM}$ obs. (16 exp.)
- [CMS with 2.6 fb⁻¹: 17*σSM obs. (16 exp.)]

Same-sign dilepton [ATLAS-CONF-2016-032]

95% CL UL: 7*σSM obs., 12*σSM exp.

Definition

Name

Focus on latest results

Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration*

arXiv:1710.10614 [hep-ex]

Same-sign and multilepton CMS search with 2016 data: 35.9 fb at 13 TeV

Object Selection (leptons and b-jets)

- **Triggers and Event Selection**
- **Background Estimates**
- Signal and Background Kinematics Definition of Signal Regions
- **Results and Discussion**
- **Additional Interpretations**

Leptons and jets

Lepton selection optimized for high multiplicity environments

Optimize isolation by defining 3 variables:

- A) Mini-isolation (cone [0.2, 0.05], shrinking with p_T)
- B) Large cone isolation: cone = jet in which lepton is clustered
- C) Lepton momentum transverse to the lepton-subtracted jet
- A is always required, then B OR C
- B rejects most fake/nonprompt leptons
- · C recovers leptons overlapping with jets due to boost/multiplicity

Latest b-tagging of jets, using deep learning

Based on standard tagger (CSV), but using more tracks and featuring 4 hidden layers

Leptons and jets

Lepton selection optimized for high multiplicity environments

Optimize isolation by defining 3 variables:

- A) Mini-isolation (cone [0.2, 0.05], shrinking with p_T)
- B) Large cone isolation: cone = jet in which lepton is clustered
- C) Lepton momentum transverse to the lepton-subtracted jet
- A is always required, then B OR C
- B rejects most fake/nonprompt leptons
- C recovers leptons overlapping with jets due to boost/multiplicity

Latest b-tagging of jets, using deep learning

Based on standard tagger (CSV), but using more tracks and featuring 4 hidden layers

Efficiencies w.r.t truth:

e (20-60 GeV): 45–70% μ (20-60 GeV): 70–90% b-jets (20-400 GeV): 55–70%

Trigger and Baseline selection

Dilepton triggers: ee, µµ, eµ

Use non-isolated triggers with $p_T^{lep} > 8$ GeV, $H_T > 300$ GeV

> 95% (92%) for ee, eµ (µµ)

Object kinematics:

p_{T}	η
$p_{\rm T} > 20 {\rm GeV}$	$ \eta < 2.5$
$p_{\rm T} > 20 {\rm GeV}$	$ \eta < 2.4$
$p_{\rm T} > 40 {\rm GeV}$	$ \eta < 2.4$
$p_{\rm T} > 25 {\rm GeV}$	$ \eta < 2.4$
	$p_{\rm T}$ $p_{\rm T} > 20 { m GeV}$ $p_{\rm T} > 20 { m GeV}$ $p_{\rm T} > 40 { m GeV}$ $p_{\rm T} > 25 { m GeV}$

Baseline selection:

- 2 same-sign or \geq 3 leptons
- DY veto: $m_{\parallel} > 12$ GeV and $|m_{\parallel} m_Z| > 15$ GeV with $p_T^{lep3} > 5(7)$ GeV for $e(\mu)$
- Njets \geq 2, Nb \geq 2
- HT > 300, MET > 50 GeV

tttt: Branching Ratio ~ 9% Baseline Selection ~ 1.5%

Main Backgrounds

Processes with same-sign WW (or WZ with a lost Z lepton) and b-jets

- ttW, ttZ, ttH (H to WW, ZZ), "ttVV"
- "Rare": VV, VVV, tWZ, tZq

Processes with Wy/Zy, and an untagged γ conversion

"Xγ": tγ, ttγ

Single-lepton or opposite-sign dilepton processes

- 1) with an additional fake/nonprompt lepton
- 2) with a charge-misidentified electron

Main Backgrounds

Processes with same-sign WW (or WZ with a lost Z lepton) and b-jets

- ttW, ttZ, ttH (H to WW, ZZ), "ttVV"
- "Rare": VV, VVV, tWZ, tZq

Processes with Wy/Zy, and an untagged γ conversion

"Xy": ty, tty

Single-lepton or opposite-sign dilepton processes

- 1) with an additional fake/nonprompt lepton
- 2) with a charge-misidentified electron

Where do the extra (b-)jets come from?

ttW

📕 tĪW

g 000000

d

Define a Control Region (CRW) to normalize the simulation

Baseline selection, with: $N_{lep} = 2$, $N_{jets} \le 5$, $N_b = 2$

ttW purity ~ 40%

Scaling (post-fit): 1.2 ± 0.3

Do the same for ttZ, inverting the DY veto

Baseline selection, $N_{lep} = 3$, $|m_{\parallel} - m_Z| < 15 \text{ GeV}$

• ttZ purity ~ 75%

Scaling (post-fit): 1.3 ± 0.3

Events / bin

ttZ

tīZ

Compare to ttW and ttZ measurements

CMS measures ttW and ttZ with the same dataset

Cannot use directly, as they use the same events (2LSS, \geq 3L)

Main result is consistent with our estimates: 1.2 (1.3) ± 0.3 for ttW (ttZ)

- ttW signal strength: $1.23^{+0.19}_{-0.18}$ (stat) $^{+0.20}_{-0.18}$ (syst) $^{+0.13}_{-0.12}$ (theo)
- ttZ signal strength: 1.17 + 0.11 0.10 (stat)+ 0.14 0.12 (syst)+ 0.11 0.12 (theo)

Second largest background (after ttW) and less well known

Mainly enters signal regions through H(WW): 500 fb * 20% ~ 100 fb

Latest measurements motivate a 50% uncertainty (rather than ~10% theory unc.)

CMS multileptons: HIG-17-004 —> Signal strength $\mu = 1.5 \pm 0.5$ ATLAS multilep. (including tau): ATLAS-CONF-2017-077: $\mu = 1.2 \pm 0.3$

Several not-yet-obs erved rare backgrounds with t's and V's

tŧVV

Generate LOS samples, use NLO cross-sections

0.8

• Largest contribution: ttWW ($\sigma \sim 10$ fb)

Interesting measurements for Run 3 and beyond!

SR

X+y and Rares

Χ+γ: **tt**γ, **t**γ

Asymmetric prompt γ —> dilepton, with one lepton lost

- Internal conversions: γ^{*} —> e⁺e⁻, μ⁺μ⁻
- External conversions: $\gamma \rightarrow e^+e^-$ interacting with the detector

Estimated from simulation in tttt analysis

- But could also define a Z—>IIγ* and γ*—> II CR, as in arXiv:1709.05406
- CR: N_{lep} = 3, m_{ll} < 75 GeV, MET < 50 GeV

Rares:

- VVV: WWW, WWZ, WZZ, ZZZ, WW γ , WZ γ
- tZq, ggH, WH, ZH, W[±]W[±], tttV, tttq
- Estimated from simulation

Nonprompt leptons

Different sources of "nonprompt" leptons

- 1) Leptons from decays of heavy-flavor and light-flavor hadrons
- 2) Hadrons misidentified as leptons
- 3) Conversions of γ in jets (Note: prompt photons included in X+ γ)

Due to the huge tt cross-section, this should be the main background in the same sign final state

We use dedicated IDs to reduce it, and dedicated methods to understand it

Basic estimate based on "fake rate" method (aka ABCD)

Nonprompt lep.

Nonprompt leptons (2)

ABCD works well, as long as two variables are uncorrelated and the transfer factor applies to SR: $\frac{SR}{B}$ $TF \equiv \left| \frac{C}{r} \right| \stackrel{?}{=}$

Differences can be understood and parametrized

- 1st cause of difference: lepton kinematics: $TF(p_T^l, \eta^l)$
- 2nd: p_T and flavor (b/c/light) of lepton's <u>parton parent</u> (p)
 - Could be solved by: $TF(p_T^l, \eta^l, p_T^p, f^p)$

ID/Isolation

Example: pick muons with: $20 < p_T^l < 25 \text{ GeV}, |\eta^l| < 0.9, f^p = b$ CMS Supplementary (Simulation) CMS Supplementary (Simulation) TF(pT^p) plot shows clear dependence ∩ ∀^{0.14} oose Mu (ttba 10⁴ Loose Mu (QCD) Tight Mu (QCD) 0.12 Loose Mu (QCD) And p_T^p is different for QCD and tt 0.1 10 0.08 0.06 0.04 0.02 **-(**ртр 40 100 120 b-quark p_r (GeV) b-quark p_ (GeV) [SUS-15-008]

Nonprompt leptons (2)

ABCD works well, as long as two variables are uncorrelated and the transfer factor applies to SR: $TF \equiv \begin{bmatrix} C \\ TF \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} SR \\ TF \end{bmatrix} \stackrel{g}{=} \begin{bmatrix} SR \\ TF \end{bmatrix}$

Differences can be understood and parametrized

- 1st cause of difference: lepton kinematics: $TF(p_T^l, \eta^l)$
- 2nd: p_T and flavor (b/c/light) of lepton's parton parent (p)
 - Could be solved by: $TF(p_T^l, \eta^l, p_T^p, f^p)$

Two ideas to avoid a 4D TF:

- Tune the "Loose" selection: $TF|_b = TF|_c = TF|_l$
- Combine p_T^l and p_T^p : $p_T^{cone} = \text{Tight} ? p_T^l : p_T^l (1 + \text{RelIso})$
- Use $TF(p_T^{cone}, \eta^l)$

Improvements bring "closure" of ABCD well within ±30%, across sample kinematics

Charge misidentification Charge misid.

- Charge misidentification is negligible for muons, and for electrons we reduce it by requiring "triple-charge agreement"
 - Agreement between 3 available charge measurements
 - Pion-like track, Electron-like track (with Brehm), $\Delta \phi$ (Pixel hits, Supercluster)

Signal and Background Kinematics

Signal peaks at N_{jets} = 6

- Expect 8 jets from dilepton tttt
- Lost jets: acceptance, overlaps
- Extra jets: ISR

Signal peaks at N_b = 3

- Expect 4 b-jets
- Loss due to b-tagging efficiency (55-70%)

In any case, N_{jets} and N_b are the most discriminant variables

Signal Region definitions

Use N_{jets}, N_b, and separate 2 lepton and ≥3 lepton events

Group regions with similar S/B Avoid empty regions, or regions with << 1 signal event expected

SR

Statistics and Systematics

In current setup, few events expected in each signal region

Combining all SRs, expect ~5.5 tttt and 16 background events Statistically limited: Systematics only account for 10% of tot. unc.

Results (limit, significance, cross-section) obtained through a maximumlikelihood fit to all CRs and SRs

Systematic uncertainties profiled as nuisance parameters

	Source	Uncertainty (%)	
	Integrated luminosity	2.5	
	Pileup	0–6	Expected results of the fit:
()	Trigger efficiency	2	ttW constrained to +30%
pui nd:	Lepton selection	4–10	
s s ou	Jet energy scale	1–15	ttZ constrained to ±30%
nal kgr	Jet energy resolution	1–5	\mathbf{H}
Sig	b tagging	1–15	tth stays at ±50%
Size of simulated sample	1–10	other nuisances unconstrained	
	Scale and PDF variations	10–15	
	ISR/FSR (signal)	5–15	
S	ttH (normalization)	50	1111 000
PurposeRare, $X\gamma$, t $\bar{t}VV$ (norm.) $t\bar{t}Z$, t $\bar{t}W$ (normalization) $t\bar{t}Z$, t $\bar{t}W$ (normalization) $Charge$ misidentification	50	tttt constrained to ~ ±100%	
	40	in other words 10 sigma	
	20		
na(Nonprompt leptons	30–60	expected significance

Opening the box (pre-fit)

Small underestimate when using pre-fit ttW, ttZ

Interesting excess in N_b = 3 bin

Checked individual events, found no suspicious behavior

Full Post-Fit results

Post-fit normalization parameters:

- ttW: 1.2 ± 0.3
- ttZ: 1.3 ± 0.3
- ttH: 1.1 ± 0.5

N _{leps}	N _b	Njets	Region
	2	≤ 5	CRW
		6	SR1
		7	SR2
2		≥ 8	SR3
	3	5,6	SR4
		≥ 7	SR5
	≥ 4	≥ 5	SR6
> 3	2	≥ 5	SR7
≤ 5	≥ 3	≥ 4	SR8
inverted Z-veto			CRZ

Post-fit kinematics

Reduced tension in Nb=3 region. Good agreement for leptons.

Results: tttt

95% Confidence Level Upper Limit

Expected (assuming no SM tttt) : 20.8^{+11.2}-6.9 fb Observed : 41.7 fb

Signal significance w.r.t. background-only hypothesis:

Expected : 1.0 Observed : 1.6

Cross section measurement:

Expected (based on 9.2 fb theory): $9.2^{+11}_{-8.6}$ fb Observed : 16.9 $^{+13.8}_{-11.4}$ fb

Reminder of theory predictions:

NLO: 9.2^{+2.9}-_{2.4} fb LO*k-Factor: 12.2^{+5.0}-_{4.4} fb

Measured cross-section is high, but well within experimental uncertainty

Results: 2HDM heavy (pseudo)scalar *

Exclude $m_{A(H)} < 430$ (360) GeV for $tan\beta = 1$

Several advantages over m_{tt} interference search:

- (1) statistics limited, large enhancement over SM tttt
- (2) no dependence on H(tt) width —> can extend sensitivity to higher tan β
- (3) can probe H/A masses at the low end of m_{tt} spectrum (350 GeV)

* From generic 2016 same-sign analysis, arXiv:1704.07323, which inspired the dedicated tttt analysis

Results: Top-Higgs Yukawa

First simplified attempt:

Compare measurement with $\sigma(tttt)$ as a function of $\kappa_t = |y_t/y_t^{SM}|$

Results: Top-Higgs Yukawa (2)

More accurate treatment of ttH background

ttH cross section also depends on y_t (proportional to y_t^2)

—> Need to adapt ttH normalization when testing yt hypotheses

Result:

 $|y_t| < 2.1$ based on the 95% CL upper limit on $\sigma(tttt)$

Conclusions

σ (tttt) is enhanced in many New Physics models

- 4th power of top-Higgs yukawa opens a new window towards the Higgs
- tt-associated production can help to probe heavy neutral particles (H/A)
- Effective Field Theory framework not yet fully explored

The search for SM tttt is finally starting to see a signal

Still a long way to go: we might reach 3σ significance in 2018, after combining with the other tttt channels (1L, 2LOS)

 Same-sign/multilepton dedicated search is young, there is plenty of of room for improvements: more signal regions, looser selection, MVA, τ, top-tagging...

Closing quiz: why are tt+X measurements ~1 σ (20-50%) high?

Post-fit kinematics

Reduced tension in Nb=3 region. Good agreement for leptons.

Isolation components in prompt and nonprompt leptons

Multi-Isolation details

 $\Delta R \left(p_{\mathrm{T}}(\ell) \right) = \frac{10 \,\mathrm{GeV}}{\min\left[\max\left(p_{\mathrm{T}}(\ell), 50 \,\mathrm{GeV} \right), 200 \,\mathrm{GeV} \right]}$ $p_{\mathrm{T}}^{\mathrm{ratio}} = \frac{p_{\mathrm{T}}(\ell)}{p_{\mathrm{T}}(\mathrm{jet})},$ $p_{\mathrm{T}}^{\mathrm{rel}} = \frac{|(\vec{p}(\mathrm{jet}) - \vec{p}(\ell)) \times \vec{p}(\ell)|}{|\vec{p}(\mathrm{jet}) - \vec{p}(\ell)|}$

$$I_{\text{mini}} < I_1 \text{ AND } (p_{\text{T}}^{\text{ratio}} > I_2 \text{ OR } p_{\text{T}}^{\text{rel}} > I_3).$$

Isolation variable	Muons	Electrons
I_1	0.16	0.12
I_2	0.76	0.80
I_3 (GeV)	7.2	7.2

CMS ttW and ttZ Results

https://arxiv.org/pdf/1711.02547.pdf, TOP-17-005

The measured signal strength parameters are found to be $1.23^{+0.19}_{-0.18}$ (stat) $^{+0.20}_{-0.18}$ (syst) $^{+0.13}_{-0.12}$ (theo) for t $\bar{t}W$, and $1.17^{+0.11}_{-0.10}$ (stat) $^{+0.14}_{-0.12}$ (syst) $^{+0.11}_{-0.12}$ (theo) for t $\bar{t}Z$. These parameters are used to multiply the corresponding theoretical cross sections for t $\bar{t}W$ and t $\bar{t}Z$ mentioned in Section 1, to obtain the measured cross sections for t $\bar{t}W$ and t $\bar{t}Z$:

Reconstructing hadronic tops

Post-fit table

	SM background	tīttī	Total	Observed
CRZ	31.7 ± 4.6	0.4 ± 0.3	32.1 ± 4.6	35
CRW	83.7 ± 8.8	1.9 ± 1.2	85.6 ± 8.6	86
SR1	7.7 ± 1.2	0.9 ± 0.6	8.6 ± 1.2	7
SR2	2.6 ± 0.5	0.6 ± 0.4	3.2 ± 0.6	4
SR3	0.5 ± 0.3	0.4 ± 0.2	0.8 ± 0.4	1
SR4	4.0 ± 0.7	1.4 ± 0.9	5.4 ± 0.9	8
SR5	0.7 ± 0.2	0.9 ± 0.6	1.6 ± 0.6	2
SR6	0.7 ± 0.2	1.0 ± 0.6	1.7 ± 0.6	0
SR7	2.3 ± 0.5	0.6 ± 0.4	2.9 ± 0.6	1
SR8	1.2 ± 0.3	0.9 ± 0.6	2.1 ± 0.6	2

Pre vs Post SRs

$N_{\rm leps}$	$N_{\rm b}$	Njets	Region
	C	6	SR1
	2	2 7	SR2
2		≥ 8	SR3
	3	5,6	SR4
	5	≥ 7	SR5
	≥ 4	≥ 5	SR6
\geq 3	2	≥ 5	SR7
	\geq 3	≥ 4	SR8

54

SR8

Region

ATLAS ttW and ttZ

arXiv:1609.01599

2HDM: from PDG and arXiv:1605.08744

production modes of the heavy Higgs bosons. In the alignment limit with small $\tan \beta$, the HW^+W^- and $b\bar{b}H(A)$ couplings are suppressed, so that the dominant contributions to H(A) production arise from the $t\bar{t}H(A)$ vertex. This leads to a variety of production

In what follows, we will both obtain existing limits on these processes by reinterpreting SSDL searches at $\sqrt{s} = 8$ TeV and forecast the reach of the $\sqrt{s} = 14$ TeV LHC and future *pp*-collider in SSDL channels. To do so, we work in terms of a simplified model in which H(A) couples to the SM particles via

$$\mathcal{L} = -y_t (c_H H \bar{t} t + i c_A A \bar{t} \gamma_5 t) , \qquad (2.1)$$

where y_t , y_b and y_{τ} are the SM Yukawa coupling constant of the third generation leptons. As we are focusing on the case with small $\tan \beta$ we will neglect the sub-dominant coupling to b and τ when we derive limits on the coefficients c_H , c_A .

HIG-16-007 results on Type II 2HDM

Current constraints on tan β and cos(β - α) from SM Higgs measurements

 $cos(\beta-\alpha)$ close to 0 tan β free for $cos(\beta-\alpha)=0$

Current limits on tan β and mA/H from SM and BSM Higgs

low-tanβ high-mass uncovered H/A->tt in this region

high-tan β exclusion due to choice of cos(β - α)

Higgs Combination

arXiv:1606.02266

Table 4: Higgs boson production cross sections σ_i , partial decay widths Γ^f , and total decay width (in the absence c BSM decays) parameterised as a function of the κ coupling modifiers as discussed in the text, including higher-orde QCD and EW corrections to the inclusive cross sections and decay partial widths. The coefficients in the expressio for Γ_H do not sum exactly to unity because some contributions that are negligible or not relevant to the analyse presented in this paper are not shown.

			Effective	Resolved	
Production	Loops	Interference	scaling factor	scaling factor	
$\sigma(ggF)$	\checkmark	t-b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$	
$\sigma(\text{VBF})$	_	_		$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$	
$\sigma(WH)$	_	_		κ_W^2	
$\sigma(qq/qg \to ZH)$	_	_		κ_Z^2	
$\sigma(gg \to ZH)$	\checkmark	t–Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$	
$\sigma(ttH)$	_	-		κ_t^2	
$\sigma(gb \to tHW)$	_	t-W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$	
$\sigma(qq/qb \to tHq)$	_	t-W		$3.40\cdot\kappa_t^2+3.56\cdot\kappa_W^2-5.96\cdot\kappa_t\kappa_W$	
$\sigma(bbH)$	_	_		κ_b^2	
Partial decay width					
Γ^{ZZ}	_	_		κ_Z^2	
Γ^{WW}	_	_		κ_W^2	
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$	
$\Gamma^{ au au}$	_	_		κ_{τ}^2	
Γ^{bb}	_	_		κ_b^2	
$\Gamma^{\mu\mu}$	_	_		κ_{μ}^2	
Total width ($B_{BSM} = 0$)					
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_a^2 +$	
Γ_H	\checkmark	_	κ_{H}^{2}	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$	
			**	$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z\gamma)}^2 +$	
				$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_\mu^2$	

Changes in the values of the couplings will result in a variation of the Higgs boson width. A new modifier, κ_H , defined as $\kappa_H^2 = \sum_j B_{SM}^j \kappa_j^2$ and assumed to be positive without loss of generality, is introduced to characterise this variation. In the case where the SM decays of the Higgs boson are the only ones allowed, the relation $\kappa_H^2 = \Gamma_H / \Gamma_H^{SM}$ holds. If instead deviations from the SM are introduced in the decays, the width Γ_H can be expressed as:

$$\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - B_{\rm BSM}},\tag{6}$$

where B_{BSM} indicates the total branching fraction into BSM decays. Such BSM decays can be of three types: decays into BSM particles that are invisible to the detector because they do not appreciably interact with ordinary matter, decays into BSM particles that are not detected because they produce event topologies that are not searched for, or modifications of the decay branching fractions into SM particles in the case of channels that are not directly measured, such as $H \rightarrow cc$. Although direct and indirect experimental constraints on the Higgs boson width exist, they are either model dependent or are not stringent enough to constrain the present fits, and are therefore not included in the combinations. Since Γ_H is not experimentally constrained in a model-independent manner with sufficient precision, only ratios of coupling strengths can be measured in the most generic parameterisation considered in the κ -framework.