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High Energy Physics at the LHC
Center-of-mass energy = 13 TeV

Credit: All collision event displays from the ATLAS Collaboration
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High Energy Physics at the LHC

?

One of the critical goals of 
the LHC is to identify new, 

massive particles

The decay of the 
new particles often 

result in jets



We have observed Standard Model 
particles decaying into two jets

The invariant mass of these 
two jets is ~80 GeV/c2



We have observed Standard Model 
particles decaying into two jets

The invariant mass of these 
two jets is ~80 GeV/c2



m/2

g = E/m
f ~ 1/g = m/E m

What if you take one of those SM dijet 
resonances and Lorentz boost it?



W bosons are naturally boosted if they result 
from the decay of something even heavier
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W

WW



W bosons are naturally boosted if they result 
from the decay of something even heavier

?

W

WW

Goal: Find W jets in 
an enormous sea of 

generic q/g jets  

These jets have a 
non-trivial structure!



p p

Searching for new particles 
decaying into boosted W 

bosons requires looking at the 
radiation pattern inside jets

momentum transverse 
to the beam (pT)



p p

like a digital image!

Up next: jet images
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Boosted W

“pixel”

the Jet Image
J. Cogan et al. JHEP 02 (2015) 118

L. de Oliveira, et al., Comp. and Software for Big Science (2017) 1

N.B. this is not the only way to 
represent a jet - more on that later
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nothing like a 
‘natural’ image!

Boosted W

the Jet Image
J. Cogan et al. JHEP 02 (2015) 118

Credit: Peter G Trimming (Wikipedia)

no smooth edges, clear features, low 
occupancy (number of hit pixels)

L. de Oliveira, et al., Comp. and Software for Big Science (2017) 1

https://commons.wikimedia.org/wiki/File:Baby_Squirrel,_seen_at_Forest_How.jpg


Why images?
Can directly visualize physics
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there is information encoded in the 
physical distance between pixels

g ⇢ qq

W ⇢ qq

and we can benefit from the 
extensive image processing literature

_

_
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g ⇢ qq

W ⇢ qq

and we can benefit from the 
extensive image processing literature

_
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radiates like a dipole
(no net charge)

net strong-force charge
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physical distance between pixels
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and we can benefit from the 
extensive image processing literature
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Pre-processing & spacetime symmetries
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Can help to learn faster & smarter; but must be careful!

One of the first typical steps is pre-processing



One of the most useful physics-
inspired features is the jet mass

Mass
60 70 80 90 100 110

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

No pixelation

Only pixelation

 = 13 TeVsPythia 8, 
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

Jet Mass [GeV/c2]

Boosted W ⇢ qq’

mW ~ 80 GeV / c2

Pr
ob

ab
ilit

y 
de

ns
ity

Pre-processing & spacetime symmetries

From 
4-vectorsFrom 

pixels
Some of this is 

unavoidable 
(detector granularity)



Mass
60 70 80 90 100 110

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

No pixelation

Only pixelation

Pix+Translate

Pix+Translate+Flip

 = 13 TeVsPythia 8, 
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

Jet Mass [GeV/c2]

Boosted W ⇢ qq’

mW ~ 80 GeV / c2

Pre-processing & spacetime symmetries [G
eV

]
T

Pi
xe

l p

1

10

210

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

h = 0

f = 0

 [G
eV
]

T

Pi
xe
l p

1

10

2 10

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

Center on the highest 
energy subjet

Pr
ob

ab
ilit

y 
de

ns
ity



Mass
60 70 80 90 100 110

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

No pixelation

Only pixelation

Pix+Translate

Pix+Translate+Flip

 = 13 TeVsPythia 8, 
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

Jet Mass [GeV/c2]

Boosted W ⇢ qq’

mW ~ 80 GeV / c2

Pre-processing & spacetime symmetries

h = 0

f = 0

 [G
eV
]

T

Pi
xe
l p

1

10

2 10

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

Center on the highest 
energy subjet

Translations in f 
are rotations Pr

ob
ab

ilit
y 

de
ns

ity



Mass
60 70 80 90 100 110

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

No pixelation

Only pixelation

Pix+Translate

Pix+Translate+Flip

 = 13 TeVsPythia 8, 
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

Jet Mass [GeV/c2]

Boosted W ⇢ qq’

mW ~ 80 GeV / c2

Pre-processing & spacetime symmetries

h = 0

f = 0

Center on the highest 
energy subjet

Translations in h 
are boosts along 

the beam direction

N.B. pixel intensity is pT 

 [G
eV
]

T

Pi
xe
l p

1

10

2 10

) η [Translated] Pseudorapidity (
-1-0.500.51

)φ

[T
ra
ns
la
te
d]
 A
zi
m
ut
ha
l A
ng
le
 (

-1

-0.5

0

0.5

1

Pr
ob

ab
ilit

y 
de

ns
ity



Jet Mass [GeV/c2]Mass
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In both pictures, total intensity of 
Einstein’s face is about the same.  

However, his face’s image 
mass is quite different!

Photos from: http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein

bright
side

dark 
side uniform moderate 

intensity

Intuition via analogy why normalization can hurt

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein


In both pictures, total intensity of 
Einstein’s face is about the same.  

However, his face’s image 
mass is quite different!

bright
side

dark 
side uniform moderate 

intensity

In standard computer 
vision, you likely don’t 
want to be sensitive to 
this! …not the case for 

jet images!

Intuition via analogy why normalization can hurt

Photos from: http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein


ultimate classification is achieved with modern 
machine learning using all pixels as input!
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W boson?

single quark/
gluon?

Now, with a carefully processed image, we 
can ask: where did this jet come from?



Modern Deep NN’s for Classification

Neural Network: composition of functions f(Ax+b) for inputs 
x (features) matrix A (weights), bias b, non-linearity f.

N.B. I’m not mentioning biology - there may be a vague resemblance 
to parts of the brain, but that is not what modern NN’s are about.

x1

x2

xn
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hNmN

[0,1]
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depth



Modern Deep NN’s for Classification

Fact: NN’s can approximate “any” function.  

Neural Network: composition of functions f(Ax+b) for inputs 
x (features) matrix A (weights), bias b, non-linearity f.

Why 

useful?
For classification, there is an optimal function to 
learn: the likelihood ratio, LL(x) = pS(x) / pB(x).



Getting into the machine’s mind
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Let’s consider an important special case: 
binary classification in 1D 
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could be e.g. 
the jet mass
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aTry this example out!

https://github.com/ivukotic/ML_platform_tests/blob/master/tutorial/joakim/OptimalClassifierVsNN/OptimalClassifierVsNN.ipynb
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tempted to place 
a threshold on x
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Let’s consider an important special case: 
binary classification in 1D 

Getting into the machine’s mind
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Threshold depends 
on natural relative 

abundance

You may be 
tempted to place 
a threshold on x

aTry this example out!

https://github.com/ivukotic/ML_platform_tests/blob/master/tutorial/joakim/OptimalClassifierVsNN/OptimalClassifierVsNN.ipynb
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Is the simple 
threshold cut optimal?

In this simple case, the log 
LL is proportional to x:  

no need for non-linearities!
Threshold cut is optimal
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aTry this example out!

https://github.com/ivukotic/ML_platform_tests/blob/master/tutorial/joakim/OptimalClassifierVsNN/OptimalClassifierVsNN.ipynb


What if the distribution of x is complicated?

Getting into the machine’s mind
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Now what is the 
optimal classifier?

Real life is complicated!

aTry this example out!

https://github.com/ivukotic/ML_platform_tests/blob/master/tutorial/joakim/OptimalClassifierVsNN/OptimalClassifierVsNN.ipynb


Input feature x

5− 4− 3− 2− 1− 0 1 2 3 4 5

Li
ke

lih
oo

d 
R

at
io

3−10

2−10

1−10

1

10

210

310

410

In this case, LL is highly 
non-linear function of x

A threshold on x 
would be sub-optimal

Getting into the machine’s mind
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aTry this example out!

https://github.com/ivukotic/ML_platform_tests/blob/master/tutorial/joakim/OptimalClassifierVsNN/OptimalClassifierVsNN.ipynb
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The curse of dimensionality
In principle, you can do the same thing in N > 1 

dimensions.  However, it very quickly gets out of hand!

Let’s see how we can use DNN’s for jet image classification
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h1m1

Ax+b f hN1

hN2

hNmN

[0,1]

background

signal

That is where NN’s come in.
Image ~ 1000 dimensional



Common tool for images is the 
convolutional NN (CNN)

The filter is like the A, only the dimensionality is now 
the filter size (<< n) and not the image size (n).

L. de Oliveira, et al., Comp. and Software for Big Science (2017) 1



Common tool for images is the 
convolutional NN (CNN)

The filter is like the A, only the dimensionality is now 
the filter size (<< n) and not the image size (n).

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

de Oliviera et al. 
1511.05190
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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Convolutional Filters

(a) (11⇥ 11) convolutional kernels from first layer (b) Convolved Jet Image di↵erences

Figure 9: Convolutional Kernels (left), and convolved feature di↵erences in jet images (right)

We also draw attention to the fact that there is a large diversity in the the convolved representations,
indicating that the DNN is able to learn and pick up on multiple features that are descriptive.

A related way to visualize the information learned by various nodes in the network is to consider
the jet images which most activate a given node. Fig. 10 shows the average of the 500 jet images
with the highest node activation for the last hidden layer of the MaxOut network (the layer before
the classification layer). The first row of images in Fig. 10 show clear two-prong signal-like structure
whereas the second and third rows show one-prong di↵use radiation patterns that are more background-
like. The remaining rows have a variety of �R distances between subjets and have a mix of background
and signal-like features.

– 15 –

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel I
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and �

i

are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵

i

is the aforementioned random variable. Each ↵

i

is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

v

i+1

:= 0.9 · v
i

� 0.0005 · ✏ · w
i

� ✏ ·
⌧
@L

@w

��
wi

�

Di

w

i+1

:= w

i

+ v

i+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L

@w

��
wi

E

Di

is
the average over the ith batch D

i

of the derivative of the objective with respect to w, evaluated at
w

i

.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

A. Krizhevsky et al. DNN for ImageNet

Filters are images!  Can visualize ‘higher-
level features’ learned by the network

Jet Images “Natural” Images

learned edge detection

L. de Oliveira et al., JHEP 07 (2016) 069



Convolutional Filters

(a) (11⇥ 11) convolutional kernels from first layer (b) Convolved Jet Image di↵erences

Figure 9: Convolutional Kernels (left), and convolved feature di↵erences in jet images (right)

We also draw attention to the fact that there is a large diversity in the the convolved representations,
indicating that the DNN is able to learn and pick up on multiple features that are descriptive.

A related way to visualize the information learned by various nodes in the network is to consider
the jet images which most activate a given node. Fig. 10 shows the average of the 500 jet images
with the highest node activation for the last hidden layer of the MaxOut network (the layer before
the classification layer). The first row of images in Fig. 10 show clear two-prong signal-like structure
whereas the second and third rows show one-prong di↵use radiation patterns that are more background-
like. The remaining rows have a variety of �R distances between subjets and have a mix of background
and signal-like features.
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Jan Kieseler

DeepFlavour Evolution

16

• Simply adding more information can even degrade performance 

•Adding convolutional layers (exploiting structures) increases the performance 
significantly 
‣ Profit from transformation and compression of particle properties
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Jan Kieseler

Further details

20

•Defined 3 working points with 20%, 10% and 1% misid. probability 

➡Consistent comparison on fully reconstructed detector-level objects 
➡All approaches show similar performance 
➡Saturation when going to higher pT for all approaches 

• Further studies to be performed  
‣ Pythia/Herwig 
‣ Ultimately validate and correct (and train?) using data
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Exciting New Directions

So far only scratches the surface
…this is a very active field of research!
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https://indico.physics.lbl.gov/indico/event/546/


pp collisions at the LHC 
don’t happen one at a time!

the extra collisions are called pileup 
and add soft radiation on top of our jets

this is akin to image 
de-noising - we can 

use ML for that!

Exciting New Directions I: Removing Noise



Exciting New Directions I: Removing Noise

⌘
�

b
ea
m

Leading vertex charged

Pileup charged

Total neutral

Leading vertex neutral
Inputs to NN | {z }

10 filters ⇥2

Figure 1: An illustration of the convolutional neural net architecture. The input is a three-

channel image: blue represents charged radiation from the leading vertex, green is charged

pileup radiation and red is the total neutral radiation. The resolution of the charged images is

higher than for the neutral one. These images are fed into a convolutional layer with several

filters whose value at each pixel is a function of a patch around that pixel location in the

input images. The output is an image combining the pixels of each filter to one output pixel.

– 5 –

…also a natural 
application of 

convolutional NNs!

Strange noise 
because we can 

measure ~2/3 of it 
(charged pileup)



“Pileup Mitigation with 
Machine Learning”

Corrected Image Mass / True Image Mass

P. Komiske, E. Metodiev, BPN, and M. Schwartz,1707.08600

Exciting New Directions I: Removing Noise



Exciting New Directions II: Simulation NN

η
z

φ

Training NN’s is slow, 
but evaluation is fast

Physics-based 
simulations of 
jets are slow

What if we can learn to 
simulate jets with a NN?



η
z

φ

Training NN’s is slow, 
but evaluation is fast

Physics-based 
simulations of 
jets are slow

What if we can learn to 
simulate jets with a NN?

noise NN

DNN W’s
Physics W’s
DNN quarks/gluons

Boosted W ⇢ qq’, mW ~ 80 GeV / c2

Image Mass [GeV/c2]

Physics quarks/gluons

M. Paganini et al.,1705.02355
L. de Oliveira et al., Software for Big Science (2017) 1

Exciting New Directions II: Simulation NN



+ More Layers for Generation

η
z

φ

What about multiple layers with 
non-uniform granularity and a 

causal relationship?

Not jet images per se, 
but the technology is 

more general than jets!

M. Paganini et al., 1705.02355



Average Images
Geant4

CaloGANM. Paganini et al., 1705.02355
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60Timing

Generation Method Hardware Batch Size milliseconds/shower
GEANT4 CPU N/A 1772

1 13.1
10 5.11
128 2.19

CPU

1024 2.03
1 14.5
4 3.68
128 0.021
512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under
various algorithm-hardware combinations.

21

See also S. Vallecorsa et al. (GeantV), C. Guthrie et al. (NYU), 
W. Wei et al. (LCD dataset group), D. Salamani et al. (Geneva), 

D. Rousseau et al. (Orsay), L. de Oliveira et al. (Berkeley)

M. Paganini et al., 1705.02355

https://indico.cern.ch/event/567550/contributions/2656673/attachments/1511208/2372569/DetSim_MachineLearning.pdf
https://github.com/pinesol/hep-calo-generative-modeling
https://indico.fnal.gov/event/13497/contribution/11/material/slides/0.pdf
https://indico.cern.ch/event/567550/contributions/2656673/attachments/1511208/2372569/DetSim_MachineLearning.pdf
https://indico.in2p3.fr/event/13811/contributions/15450/attachments/12892/15807/tr170615_DavidRousseau_LHC_computing_LSSTLyon_v1.pptx.pdf
https://indico.cern.ch/event/567550/contributions/2629438/attachments/1510662/2355700/ACAT_GAN.pdf


Where next III: Learning directly from data
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For supervised learning, we depend on labels
labels usually come from simulation

What if data and simulation are very different?
…your classifier will be sub-optimal

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data
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J. Barnard et al. 
Phys. Rev. D 95, 014018 (2017)

5

Figure 3: This figure shows the W-jet image di↵erences
between the default PYTHIA shower and the alternate VINCIA

shower in PYTHIA (top left), the default SHERPA shower (top
right), the default HERWIG angular shower (bottom left) and
the HERWIG dipole shower (bottom right). The plots have been
individually normalised.

To gain an understanding of the systematic uncer-
tainties in using networks trained on simulated data,
we study the behaviour of networks across a variety of
di↵erent generators and parton showers which all provide
an adequate description of current LHC data. We assume
that given a number of di↵erent ROC curves derived from
di↵erent generators and parton showers, the envelope of
these curves provides an approximate uncertainty band
associated with training the network on simulated, rather
than real, data.

Recently, Ref. [48] has studied parton shower uncer-
tainties in HERWIG 7. They divide the uncertainties into
a number of classes: numerical, parametric, algorithmic,
perturbative and phenomenological. Numerical uncer-
tainties can be decreased by increasing the number of
events, while parametric uncertainties are those external
to the MC generator: masses, couplings, PDFs and
so forth. The focus of our work in this section is on
algorithmic uncertainties, those due to di↵erent choices
of parton shower algorithm. The authors of Ref. [48]
focus on perturbative and phenomenological uncertain-
ties, which are from truncation of expansion series and
parameters deriving from non-perturbative models. Our
work is more in the spirit of the ‘Towards parton shower
variations’ contribution to the 2015 SM Les Houches
Proceedings [49]. Previous studies also exist within the
HERWIG framework on the implications of MC uncer-
tainties on jet substructure in the context of Higgs
searches [50].

We generate background and signal events with

three of the most widely used MC generators:
PYTHIA 8.219 [41], SHERPA 2.0 [51, 52] and HERWIG 7.0 [53,
54]. For PYTHIA 8 we study both the default shower
and the VINCIA shower [55, 56], and for HERWIG we
include both the default (angular ordered) and dipole
showers [57, 58], giving us five di↵erent parton shower
models to study.
The default HERWIG shower (known as QTilde) is based

on 1 ! 2 splittings using the DGLAP equations, with
an angular ordering criterion [59]. The SHERPA shower is
based on a Catani-Seymour dipole formalism [60]. In this
case one particle of the dipole is the emitter which under-
goes the splitting, while the other is a spectator which
compensates for the recoil from the splitting and ensures
that all particles remain on their mass-shells throughout
the shower, leading to easier integration with matching
and merging techniques. The default shower in PYTHIA 8
is also a dipole style shower [61], ordered in transverse
momentum.
While parton showers have traditionally been based

upon partonic DGLAP splitting functions, another possi-
bility is to consider colour-connected parton pairs which
undergo 2 ! 3 branchings (note that this is distinct
from Catani-Seymour dipoles used in SHERPA, where one
parton is still an emitter, and the other recoils). In
these so-called antenna showers, the 2-parton antenna
is described with a single radiation kernel. This has the
advantage, for instance, of explicitly including both the
soft and collinear limits. We use the recently released
VINCIA [55, 56] plug-in for PYTHIA 8 as a representative
antenna shower.
These event generators also provide di↵erent treat-

ments of the soft radiation from the underlying event
which accompanies each hard partonic scattering. They
also possess di↵erent implementations of the parton-to-
hadron fragmentation process being based either around
cluster fragmentation ideas (HERWIG and SHERPA) or the
Lund string model (PYTHIA), giving us a wide range of
QCD-related e↵ects to probe. To incorporate detector
e↵ects such as smearing we pass all events through
the Delphes 3 detector simulator [42]. In the studies
presented here, our baseline shower is PYTHIA 8 with its
default settings.
We construct average jet images for all five di↵erent

generators and showers under investigation, and then
subtract the default PYTHIA average jet image in order
to see the di↵erences in the average radiation patterns.
The results are shown in Fig. 3 for the W-jet signal. We
have normalised the intensity di↵erences of the pixels so
that red indicates a region of excess and blue a deficit
relative to the PYTHIA default. While the VINCIA is
roughly similar to the PYTHIA default, the SHERPA and
HERWIG dipole showers exhibit more intense radiation in
the resolved subjets and a substantial deficit in the region
between the subjets. The HERWIG angular shower shows
the opposite, with less radiation in the subjet cores and
more di↵use radiatioon. QCD radiation exhibits similar
features.

DNN classifiers 
can exploit 

subtle features

subtle features are 
hard to model !

we need to be 
careful about which 

models we use - 
only data is correct

N.B. not all of these have been tuned to the same data

Boosted W boson jets
Where next III: Learning directly from data

For a mixed approach, see 
G. Louppe et al.

https://arxiv.org/abs/1611.01046
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Solution: Train directly on 
data using mixed samples

E. Metodiev et al., JHEP 10 (2017) 174
L. Dery et al., JHEP 05 (2017) 145

Where next III: Learning directly from data

https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1702.00414
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
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and M
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defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples
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An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
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and f
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are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n

R�
1i, R

�
2i, . . . , R

�
Ni

o

. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

and azimuth between particle i and axis K in the jet. There are numerous possible choices for

the N axes in the jet; in our numerical implementation, we choose to define them according
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FIG. 8. ROC curve for DNN trained on reconstruction level jets with di↵erent trimming and

constituent ordering applied. Successive preprocessing stages (scaling, translation, rotation and

flipping) are applied for all curves. The LHC 2016 pileup scenario was used.

tested on the data in a given pileup scenario. Testing a network on a pileup level on which
it had not been trained is also studied.

Figure 9 shows the performance training and testing on trimmed, reconstructed jets for
various levels of pileup. Thanks to the use of inputs from the trimmed jets, the sensitivity
to pileup is very small. Figure 10 shows the p

T

dependency on performance under various
pileup conditions. The overall trend is that the rejection at low p

T

is best for the high pileup
cases, whereas at high p

T

it is approximately 10% better for low pileup scenarios, though
again the dependency on pileup is rather small.

Another consideration is whether the DNN would need to be retrained for di↵erent pileup
scenarios. This does not appear to be the case for the pileup values expected at the LHC
Run 2. Figure 11 shows the performance when a network is first trained on one pileup
scenario, but then tested on a di↵erent scenario. The neural network again appears to be
relatively robust against pileup. Indeed the overall performance is almost better for the
cases with some pileup. A plausible hypothesis is that pileup essentially adds noise to the
data. A common machine learning technique is to augment the data by adding noise, or
using dropout [37] to make the DNN more robust to variations, and more able to pick out
the salient features required for classification. Thus, deep neural networks maybe be more
robust to e↵ects like pileup which essentially mimic more noise, compared to generator or
parton showering uncertainties which can greatly a↵ect the jet shapes [17].

13

6

FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with
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Beyond Images

T. Cheng 1711.02633 (RNN)

+ many more results at the 
dedicated workshop next month!

K. Datta et al. 1710.01305 (re-param)

J. A. Aguilar-Saavedra et al. 
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+ flavor tagging (see backup)

https://indico.physics.lbl.gov/indico/event/546/
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Conclusions and outlook

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

The key to robustness is to 
study what is being learned; 
this may even help us to learn 
something new about nature!

(Jet) image-based NN classification, 
regression, and generation are 

powerful tools for fully exploiting the 
physics program at the LHC
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70b-tagging in CMS and ATLAS
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Performance of the b jet identification efficiency algorithms demonstrating the probability 
for non-b jets to be misidentified as b jet as a function of the efficiency to correctly 
identify b jets. The curves are obtained on simulated ttbar events using jets within tracker 
acceptance with pT>30 GeV, b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for CSVv2, DeepCSV, and cMVAv2. cMVAv2 
uses also the information from the soft leptons inside jets, while CSVv2, DeepCSV do 
not. The performance in this figure serves as an illustration since the b jet identification 
efficiency depends on the pT and η distribution of the jets in the topology as well as the 
amount of b jets from gluon splitting in the sample.
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71Locally Aware GAN (LAGAN)
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Learning when you know (almost) nothing
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h

f

particle 1 with pT = 1

particle 2 with pT = 1

The mass of this ‘jet’ is ~1.7 

f = +1

f = -1

Pre-processing & spacetime symmetries



particle 1 with pT = 1

particle 2 with pT = 1

If we rotate the jet 
by p/2, then the new 

jet mass is ~2.4

Pre-processing: Rotations

h

f

h = +1

h = -1

Pre-processing & spacetime symmetries



CMYK - 95c / 9m / 0y / 83kPantone - PMS 547U

Logo: Small Color: please use the mix appropriate to your application

Default Typefaces

DEFAULT SAN SERIF TYPEFACE DEFAULT SERIF TYPEFACE

Arial
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890

Rev 09/23/14

RGB - R 0 / G 57 / B 90 

Berkeley Lab Logo Usage

Times New Roman
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890

Logo: Large

76Locally Connected Layers
Due to the structure of the problem, 

we do not have translation invariance.

However, convolutional-like architectures 
are still useful to e.g. reduce parameters

Classification 
studies found fully 

connected networks 
outperformed CNNs
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77Locally Connected Layers
Locally connected layers 

use filters on small patches
(CNN is then a special 

case with weight sharing)
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78Calorimeter Simulation
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We take as our model a 3-
layer LAr calorimeter, 
inspired by the ATLAS 
barrel EM calorimeter 

A single event may have O(103) 
of particles showering in the 

calorimeter - too cumbersome 
to do all at once (now)

We exploit factorization of 
energy depositions



CMYK - 95c / 9m / 0y / 83kPantone - PMS 547U

Logo: Small Color: please use the mix appropriate to your application

Default Typefaces

DEFAULT SAN SERIF TYPEFACE DEFAULT SERIF TYPEFACE

Arial
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890

Rev 09/23/14

RGB - R 0 / G 57 / B 90 

Berkeley Lab Logo Usage

Times New Roman
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890
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79Generator Network for CaloGAN
One ‘jet image’ 
per calo layer

One network per particle type; 
input particle energy

ReLU to 
encourage 

sparsity

use layer i as 
input to layer i+1
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80Discriminator Network for CaloGAN
help avoid 

‘mode collapse’
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81“Overtraining”

no mode 
collapse

not 
memorizing

A key challenge in training GANs is the diversity of generated 
images. This does not seem to be a problem for CaloGAN.
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82And now: Modern Deep NN’s for Generation

DPythiaWhen D is maximally 
confused, G will be 
a good generator Physics-based 

simulator

M. Paganini, L. de Oliveira, and BPN 1705.05927, 1705.02355

{real,fake}

G
D

GAN

noise

Generative Adversarial Networks (GAN):  
A two-network game where one maps noise to images 
and one classifies images as fake or real.
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83Energy per layer

N.B. can always add these (and 
others) explicitly to the training

Pions deposit much less energy 
in the first layers; leave the 

calorimeter with significant energy  
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84Depth of the shower

Depth-weighted total energy ld
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85Lateral spread

These moments and others are useful 
for classification; we have also tested 
this as a metric (NN on 3D images)

The much larger variation in the pion 
showers is a challenge for the network.
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86Shower Energy

Beyond our 
training sample!
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Most activating images

Figure 10: The average of the 500 jet images with the highest node activation for the last hidden
layer of the MaxOut network. The nodes are ordered from top left to bottom right by increasing
sparsity. The top left is the most commonly activated node whereas the bottom right node is least
activated and frequently zero.

– 16 –

Take a node in the 
NN and ask which 

input images 
activate it the most

Some nodes learn 
about subjets and 
some learn about 

peripheral radiation
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Most activating images

Figure 10: The average of the 500 jet images with the highest node activation for the last hidden
layer of the MaxOut network. The nodes are ordered from top left to bottom right by increasing
sparsity. The top left is the most commonly activated node whereas the bottom right node is least
activated and frequently zero.
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Take a node in the 
NN and ask which 

input images 
activate it the most

Some nodes learn 
about subjets and 
some learn about 

peripheral radiation
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Most activating images

Figure 10: The average of the 500 jet images with the highest node activation for the last hidden
layer of the MaxOut network. The nodes are ordered from top left to bottom right by increasing
sparsity. The top left is the most commonly activated node whereas the bottom right node is least
activated and frequently zero.
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input images 
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Some nodes learn 
about subjets and 
some learn about 
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Correlation between input and output

5.3 Physics in Deep Representations

To get a tangible and more intuitive understanding of what jet structures a DNN learns, we compute
the correlation of the DNN output with each pixel of the jet-images. Specifically, let y be the DNN
output, and consider the intensity of each pixel Iij in transformed (⌘,�) space. We the construct an
image, which we denote the deep correlation jet-image, where each pixel (i, j) is ⇢Iij ,y, the Pearson
Correlation Coe�cient of the pixels intensity with the final DNN output, across images. While this
this image does not give a direct view of the discriminating information learned within the network,
it does provide a guide to how such information may be contained within the network. In Figure 11,
we construct this deep correlation jet-image for both the ConvNet and the MaxOut networks. We
can see that the location and energy of the subleading subjet, found at the bottom of the image, is
highly correlated with the DNN output and important for identifying signal jet-images. In contrast,
the information contained in the leading subjet, seen at (x, y) ⇠ (0, 0) in the image, is not particularly
correlated with the network output owing to the fact that both signal and background jets have
high energy leading subjets. We also see asymmetric regions around both subjets that are correlated
with the DNN output and is indicating the presence of additional radiation expected in the QCD
background jets. Finally, a small negative correlation with the rest of the jet area is seen, indicating
that radiation from the background jets is more likely to be observed in these regions. The exact
function form of these distribution are not known, nor does it seem to describe exactly any known
physics inspired variable.

Figure 11: Per-pixel linear correlation with DNN output for the Convnet (left) and the MaxOut
network (right). Signal and background jets are combined.

– 17 –
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