

Thermophysical and mechanical characterization of advanced graphitic materials

1st Workshop of ARIES WP17 PowerMat, Politecnico di Torino 27/11/2017 Laura Bianchi (CERN)

Outline

- Introduction
- Characterization techniques
- Latest characterization campaigns:
 - Highly Oriented Pyrolytic Graphite
 - Metal Carbide Reinforced Ceramics
 - Carbon Fiber Carbon
- Summary
- Future steps

Introduction

- The collimators' jaws are made of absorber materials which interacts with high energetic particles
- They must withstand a harsh environment...
 - Thermal shocks
 - Ultra High Vacuum
 - Radiation
 - while performing the required tasks
 - Cleaning
 - Low RF impedance

Thermophysical and mechanical characterization

L Bianchi – 1st Workshop of ARIES WP17 PowerMat

Preamble

Conventional Reference System

 Thermal diffusivity results marked with * corresponds to a non-negligible underestimate of the measured true value

Highly Oriented Pyrolytic Graphite

- Manufactured by Momentive
- It features:
 - Highly oriented crystals in a layered structure
 - In-plane conductivity 4 times copper

Illustration and Microscopic Image of Highly-Oriented Graphene Layers

HOPG: Thermal properties 1/2

L Bianchi – 1st Workshop of ARIES WP17 PowerMat

HOPG: Thermal properties 2/2

Metal Carbide Reinforced Ceramics

- Nb-8304Je by Nanoker
 - Molybdenum carbide as reinforcement
 - Ti 0.6 %vol
 - T_{Sintering}=2660 °C, T_{Post-sintering}=2450 °C
- TG-1100 by Brevetti BIZZ
 - Titanium carbide as reinforcement
 - Ti 5.7 %w

Nb-8304Je: Thermal properties 1/2

Nb-8304Je: Thermal properties 2/2

L Bianchi – 1st Workshop of ARIES WP17 PowerMat

TG-1100: Thermal properties

Carbon Fiber-Carbon

- Comparison of three grades whose production process differ in the final baking temperature (which plays an important role in the diffusivity properties).
 - CFC AC150K, currently embarked in the collimators, Tf= 2800 °C
 - CFC FS140, characterised in 2016, Tf= 2500 °C
 - CFC FS140, characterisation ongoing, Tf= 2800 °C
- In between the first and the second two grades, Tatsuno changed the raw material (AC150 Across Co → FS140 CFC Design Co)

Carbon Fiber-Carbon: Thermal properties 1/4

Carbon Fiber-Carbon: Thermal properties 2/4

Carbon Fiber-Carbon: Thermal properties 3/4

Carbon Fiber-Carbon: Thermal properties 4/4

Summary

Property		CFC AC150K	CFC FS140 (2500 °C)	CFC FS140 (2800 °C)	Nb- 8304Je	TG-1100	HOPG	MG- 6403Fc
Density [g/cm ³]		1.89	1.87	1.92	2.57	2.19	2.25	2.54
cp @ 20°C [J/gK]		0.76	0.72	0.74	0.63	0.64	0.69	0.62
CTE RT-1000°C [10 ⁻⁶ /K]	L	0.03	-0.07	-0.04	1.77	Tests planned	0.04	2.82
	т	11.6	9.93	9.93	15.4	Tests planned	33.6	10.9
λ@RT [W/mK]	L	233	124	171	720	435	1685	738
	т	54	42	50	29	52	7.8	50
Flexural strength [MPa]	L	139	165	156	94	Tests planned	25.5	58
	т	10	9	10	13	Tests planned	Tests planned	10
Reference E [GF	Pa]	62	73	Tests planned	83	Tests planned	25	60
Electrical conductivity [MS/m] [#]	L	Y=0.24 Z=0.18	Y=0.12 Z=0.09	Tests planned	0.96*	Tests planned	2.5*	1.01*
	т	0.03	0.02	Tests planned	0.05	0.08	0.0009*	0.07
Uncertainties of	of m	easurements	: EDMS_137	1429, EDMS_	1371432	*sigmatest	#Jorge G. Valenzue	la

Future steps

- Ongoing
 - CuCD (market survey)
 - CFC FS140 (2800 °C) dilatometry, IET, compression test
- Characterization of MultiMat spare specimens:
 - MG-6541-FC (New!)
 - TG-1100
 - CFOAM
 - HOPG Mechanical tests
 - •
- Investigate LFA capabilities with NETZSCH (→ meeting in Jan 2018)
- Benchmark with Material Research Facility UKAEA

Future steps

Mechanical characterization up to 1200 °C

Compression test •Cylindrical specimen •Ø4-14.5 x h10

3- and 4-point bending test DIN EN 843-1 Square specimen •60x4x3mm

Future steps

- Mechanical characterization up to 1200 °C
- For graphitic material below 700 °C

GR4550 - Mass Reduction after heating from room temperature, soaking time 10 minutes, air

Thank you for your attention! Questions?

Back-up slides

Figures of Merit

Material	TRI	TSI	RFI	
CFC AC150K	1372	47	0.24	7
CFC FS140 (2500 °C)	1943	28	0.12	$TSI \propto \frac{\pi}{\overline{\alpha} \rho}$
CFC FS140 (2800 °C)	ongoing	ongoing	ongoing	$\mathbf{TRI} \propto \frac{R_M c_p}{\overline{E} \overline{\alpha} \rho}$
Nb-8304Je	253.9	49.2	0.92	-
TG-1100	not enough data	not enough data	not measured	$RFI = \gamma$
HOPG	ongoing	ongoing	ongoing	

Material	TRI	TSI	RFI
MG-6530Aa	200	35	0.83
MG-6541Aa	226	37	0.98
MG-6403Fc	246	58	0.91

Flexural tests (4-point bending)

LFA limits: Thickness sensitivity

Mechanical testing at HT – Cu alloys

Mechanical characterization up to 1200 °C
High Temperature Tensile Tests – Tensile Strength

Nb-8304Je: Flexural test

4-point bending tests

L Bianchi – 1st Workshop of ARIES WP17 PowerMat