UHV characterization of advanced materials and their coatings

Carlotta Accettura EN/MME, with many contributions of TE/VSC

1st Workshop of ARIES PowerMat (WP17)

Turin- 27 November 2017

Outline

- Introduction: the LHC and the UHV
- Outgassing of collimator materials:
 - Graphite, CFC and MoGr
 - MoGr investigation bulk material
 - MoGr investigation coating
 - CuCD
- Conclusions and outlook

The UHV requirements

- In all the particle accelerators an high or ultra-high vacuum is required: beam stability and lifetime (beam-gas scattering)
- LHC vacuum acceptance limits for collimators:
 - Low outgassing rate (1·10⁻⁷ mbar·l/s)
 - No NEG saturation (N₂, CO, CO₂,..)
 - Low SEY (ESD, electron cloud)

Collimation system upgrade

Graphite outgassing – Air content

2D Carbon-Fibre-reinforced Carbon (CFC)

Graphite

Molybdenum-Carbide Graphite

MoGr treatment

US cleaning-last grade

MoGr treatment

Diamond paste polishing (particle size 1µm):

- Q_{jaws}= 5.4·10⁻⁷ mbar·l/s **⊠**
- Air still dominant
- Surface damage seems removed

The surface plays a role (CO₂ blasting), but there should be also a **bulk contribution** to air trapping

Solution 1: Higher T process

Higher temperature during production process:

- Q_{jaws}= 3.1·10⁻⁸ mbar·l/s ☑
- H₂ dominated
- Similar surface damaged (FIB)
- Lower density: similar void fraction,
 - lower carbide content (3D FIB)

	Compliant sample	Non- compliant sample
%vol carbide	4.5	7.8
%vol void	5.1	5.7

Solution 2: Different compaction

Material	Q _s [mbar·l/ s·cm²]	
As received	4.7·10 ⁻¹¹	
48h firing	3.5·10 ⁻¹²	

Mo coating on MoGr – TDS

CO₂ blasted MoGr with Mo coating

- The coating:
 - reduces the outgassing up to 200-250°C (oxide layer?)
 - increases the outgassing above these T (CO₂ blasting) → with a proper preparation should be compliant

Mo coating on MoGr – SEM

Need to verify possible air trapping within the Mo layer

US CLEANING

27-Nov-17 Carlotta Accettura 13

Copper-Diamond

 Robustness against accident situation: W alloy → CuCD

US cleaning
before the test→
impossible to
pump-down

Material	Q _s [mbar·l/ s·cm²]	Q _{jaws} [mbar·l/ s]	
CuCD + cladding	7.4·10 ⁻¹²	2.9·10 ⁻⁸	

14

27-Nov-17 Carlotta Accettura

Secondary Electron Yield

Conclusions and outlook

- A **complete** characterization (outgassing, TDS, microscopy, knowledge of the production process,...) is required to understand the phenomena
- Air content in MoGr has to be reduced during the production:
 - higher T (Reproducible? Why?)
 - under vacuum compaction
 - longer annealing
- CuCD: promising material, air exposure to be checked
- Coating characterization:
 - surface preparations effect on outgassing
 - coating effect on outgassing (ongoing)
 - adhesion

27-Nov-17 Carlotta Accettura

16

Thank you for the attention!

TDS-MoGr

MoGr- 48h firing

48 h, 950°C vacuum firing:

- Q_{before}/Q_{after}= 7, but still out of the limits (~2.5 for 2h firing)
- H₂ decreased
- N₂ decreased, Ar not

27-Nov-17 Carlotta Accettura

19

CFC- 48 firing

Treatment	Total outgassing [mbar*l/s]	Internal leak [mbar*l/s]
None	7.5·10 ⁻⁸ ⊠	8.3·10 ⁻⁹ ×
2h firing, 950°C	1.1·10 ⁻⁸ ☑	5.7·10 ⁻⁹ №
48h firing, 950°C	6.9·10 ⁻⁹ ☑	3.5-10 ⁻¹⁰ ☑

US cleaning-first supplier

US cleaning + 48 h firing:

- Q_{before}/Q_{after}= 16
- N₂ decreased, Ar constant (normalized graph)
- → result similar to just 48 h vacuum firing

US cleaning-last grade

Outgassing and thermal treatment

Grade	Thermal treatment	Total outgassing jaws [mbar*l/s]	Internal leak [mbar*l/s]	Gas analysis
Nd-7301Cb	VF 950°C 48h, Ar venting	1.10-8 ☑		X
Nd-7301Cb	VF 950°C 48h, Ne venting	2.5⋅10 ⁻⁹ ☑	2.2·10 ⁻⁹ ☑	
Nw-8301Ed	None	1.8-10 ⁻⁷ E Reduc	9.3-10 ⁻⁹ 🗷 📉	Reduction
Nw-8301Ed	VF 950°C 48h, air venting	1.4-10-8 ☑ ~10	5.3·10 ⁻⁹ ☑ ✓	₩.8

23

27-Nov-17 Carlotta Accettura

Gas venting after firing 48h

- H₂ dominated
- Adsorption of venting gas

- H₂ dominated
- CH₄ reduction

H2 dominated spectra Low internal leak

Compliant <u>after 48h</u> <u>firing</u>

27-Nov-17

Mo coating machine

27-Nov-17 Carlotta Accettura 25

Secondary Electron Yield

