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simulations regarding FAIR targets,

beam dumps / catchers and previous
experiments at GSI
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With input from P. Katrik, H. Weick et al.




Radiation damage in beam
+
dumps and beam catchers  4RJES

Radiation damage in the carbon part of the beam dump is caused by
three mechanisms:

« Elastic collisions of the primary beam, fragments or neutrons with
the carbon atoms

« For high linear energy deposition the heating by the electronic
energy loss can cause microscopic material transformation and
track formation. This happens in graphite above a threshold of dE/dx
= 18 keV/nm and will therefore occur only in the Bragg peak close to
the end of the range

 Spallation of the nuclides and creation of other chemical elements
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Super-FRS Beam Catcher
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Beam energy: 750 MeV/u. Courtesy H. Weick

Thermal simulation shows cooling problem
with radiation damaged graphite,
A =70-40 W/(m K) --> 15 W/(m K),
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PHITS simulation of DPAs from elastic collision, all values stay below 1 DPA for
the whole lifetime of the device even with full uranium beam intensity over 15
years with 77 days continuous operation in each year . The peak in carbon
represents the end of the range near the maximum of nuclear stopping power.

Courtesy H. Weick




DPA calculation for the Super-FRS graphite target

Graphite wheel cooled only by radiation

« 5 concentric graphite rings, 16 mm wide
« thicknesses of 1, 2.5, 4, 6 and 8 g/cm?
« beam parameters:

1. Slow extraction mode:
— extraction time ~1s; 1012 ions/cycle
— beam energies: 1 GeV/u.

— beam spot: two-dimensional Gaussian with oy
=1 mm and oy, =2 mm

— ions fluence per year: 1017 ions/cmz2 (assuming
an annual accumulation of 107 pulses)

— The temperature distribution for the worst case
(1012 jons/spill, 1 GeV/u 238U on the 4 g/cm2
ring) The target layer is heated to a maximum
temperature of 750 °C

2. Fast extraction mode:

— 1012 jons extracted within 50 ns




y [cm]

DPA calculation for the Super-FRS G.)
graphite target ARIES

no. = 6, iz= 6, tot DPA

no.= 1, iz= 1, tot DPA no. =10, iz =10, tot DPA

DPA/sou‘rce *1.E+24
y [em]
DPA/source * 1.E+24
y [em]

=
DPA/source * 1.E+24

-0.5 0.0 0.5

05 0.0 0.5 x [em] -05 00 : 05
x [cm] x [em]
max DPA/source”™ 4x101°
DPA/ year ~ 4 x 103
H prod ~ 50 appm/year (diffuses out)
He prod ~ 5 appm/year

(high enthalpy of solution, can reach very high concentration in material -
accumulates in bubbles)




Radiation Damage Estimate with Neutrons
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Tig.l. Determination of critical value of neutron fluence for graphile znd
changing of its physical properties under irradiation.
V — volume changing; E -~ elastic modulus; k — thermal resistance:
p — electrical resistance.

Radiation Damage and Life-time Evaluation of RBMK Graphite Stack, XA9642904,

P.A.Platonov, O.K.Chugunov, V.N.Manevsky, V.l.Karpukhin, Russian Research Center Kurchatov
Institute
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How long will the Super-FRS .
graphite target last: low extraction ARIES

* 10%3 tracks/cm? is a critical density of ion tracks:

» high values of swelling and induced stresses which are
relaxed through crack formation

Fluence/puls = 1012/ Aring =1.11*101° i/ cm?

Fluence /year = 107pulses/year x fluence/puls
~ 1017 i/cm?

M.Tomut, GSI



Heavy ion track yield at Super-FRS

energies ARiES

of primary beam and targ~t tomnaraturac

» Track yield is highly reduced at 10°g . '
high ion energy and target X s
temperature (Liu et al, PRB 64 (2001) _ 'O°¢ o i3
184115) S .
10-2? : ] ‘”Xe_g
«10°3 efficiency of track formation - >
at Super-FRS energies L T
103 efficiency of track formation
at temperatures above 800 K = .
(JL'U et a.l / NIM B 245 (2006) 126' m: 4 g/lcm? C target
i 12 kW power

129) ) Gaussian vertical profile,

Oy =2mm

5 steps (1 — 8 g/cm?)
« estimation of the track density/
year in the Super-FRS target:

@:10 11 tracks/cm2 B. Achenbach, -

ANSYS workbench
M.Tomut, GSI
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7 EoCARD? Radiation Damage

~— (discussion at WP11 annual meeting ‘14)

7 A
CERN

Parameters to account for damage are:
Displacement Per Atom
He/H transmutation
Electronic stopping

Damage correlation between different types of irradiations (projectile and
energy) should take into account:

Primary recoil energy spectra;
Displacement dose rate, DPA/s;
Transmutation production rates, He/DPA and H/DPA;

Kinetics of irradiation-induced defect production and accumulation
behaviour due to pulsed irradiation.

Production of single point defects and defect clusters.
Extrapolating from ion to high energetic protons challenging
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He implantation experiments




Morphology evolution with

He* fluence ARTES

EHT = 15.00 kv Signal A = InLens Date :28 Jan 2009 EHT =15.00 kv Signal A = InLens Date :30 Jan 2009
Mag= 10.00 KX WD = 3.9mm Mag= 10.00 KX WD = 3.2mm

EHT = 15.00 kv Signal A = InLens EHT =15.00 kv Signal A = InLens |—| . Signal A =InLens Date :28 Jan 2009
Mag = 10.00 KX WD = 3.3 mm Mag = 10.00 KX 3.9mm 5.4 mm




Intensity a.U.

Raman spectra of graphite irradiated with 100keV He*-ionss
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*G-peak shifts first to higher then to lower wavenumbers
*Increase of D-peak to G-peak ratio followed by decrease of this ratio




Experiments at GSI
for dpa calculations

lon: C, Ca, Sm, Au and U
Energy : 4.8 MeV/u
Material:
graphite 1.8 g/cm3
MoGr 2.6 g/cm?3

dpa/ primary
as a function of depth

Rato (A,/4:)

ARIES

Sam

undegraded

le

- - -
197Au, 11.1 MeV/u
r 1 1
X1 X2 X4
1-4 1 1 T 1 T 1 35
el. enerey loss
B Ap/Ag at pos. X2 i | |
L2} uncoversd part _-l Ap/Aq at pos. X3 vai a0
1 _..--""-'“.-:-_.-_-.-_-_-:.--"""«.'._" ------'-'---\.__\. - 7 25 E
", s, =]
™ -
0.8 | . 120 =
Lo 15 =
0.6 | nuc. energy loss 'f_ - el. enerey loss i E
= uncovered part 1 i uncovered part
. - My {110 =
0.4 | BT ‘f”/ﬂ )
| ILIE P | e nuc. energy loss 15 °©
[ e .
02T gpen ¥ 44— uncovered part 0
oL m B - [ ] {u—u"‘ e
0 20 40 60 80 100 120 140 160 180
Depth in pm

Damage evolution with depth




