

Update on radiation damage calculations for the HL-LHC betatron cleaning insertion

E. Skordis On behalf of the FLUKA and Collimation teams

Energy deposition simulation requirements for collimation losses

Creating input for further FLUKA simulations 1.

New method: Sixtrack-FLUKA Coupling provides input (lossmap of proton impacts on collimator surface)

- 2. FLUKA simulation set up
 - Model complex geometries of all key elements of the LHC

- Set up the simulation parameters
 - Source routine
 - Magnetic fields routines
 - **Physics settings**
 - Scoring
 - Ftc...

TCP simulated Geometry

ARIES 1st Workshop WP17 Torino 28/11/2017

Internal = Negative Jaw

1.2 m

EUCARD² – Malta Results overview Primary Horizontal

500kW of 7 TeV/p = 4.5e11p/s

TCP Hor -Touches- Energy Density Peak 5*5um² - 500kW 7TeV Protons

 The remaining energy deposition is attributed to other charged particles (i.e. Pions)

Total Power <u>deposited</u> in both Jaws: 3kW

1.15e16p ≈ 30-40 fb⁻¹

Area of impact 0.005*0.1=5e-4cm²

a factor of ~100 more for HL-LHC

30

TCP Hor -Touches- DPA 5x5um² in xy Intagrated losses of 1.15e16 p

Carbon 12 contribution included in the lons!

Multipass factor = 1.5 - Fluence = 3.45e19p/cm²

EUCARD² – Malta Results overview Skew TCSG

500kW of 6.5 TeV/p = 4.85e11p/s

Total Power <u>deposited</u> in both Jaws for GRAPHITE: 15kW

Total Power <u>deposited</u> in both Jaws for MoGR: 37.5kW

• The remaining energy deposition is attributed to other charged particles (i.e. Pions, Kaons)

EUCARD² – Malta Results overview Skew TCSG

ARIES 1st Workshop WP17 Torino 28/11/2017

7

a factor of ~100 more for HL-LHC

IP7 losses scaling and impact on forecast for HL-LHC era

	Year	Integrated Luminosity (fb ⁻¹)	Integrated Intensity* (ps)	Lost Protons (FLUKA + BLM)	Lost Protons (2015 scaled)	Lost Protons (Old scaling)
					Intensity	Luminosity
	2015	4.2	7.6×10 ²⁰	6.2×10 ¹⁴		1.2×10 ¹⁵ (2)
	2016	40	2.6×10 ²¹	1.5×10 ¹⁵	2.1×10 ¹⁵ (1.4)	1.15×10 ¹⁶ (7.7)
	2017**	44	2.1×10 ²¹	1.6×10 ¹⁵	1.7×10 ¹⁵ (1.1)	1.2×10 ¹⁶ (7.5)
	HL- LHC***	3000	~10 ²³	-	8.4×10 ¹⁶	~8.6 ×10 ¹⁷ (~10)
r	ackets rat	tio hetween sca	aled and	* Integrated pp intensity considering both beams		

In brackets, ratio between scaled and measured protons lost

* Integrated pp intensity considering both beams **Analysis up to 25-10-2017

***Estimated annual intensity calculation (Andrea Apollonio)

- Confirmation that despite the different operational scenario, integrated intensity scaled losses from 2015 are in good agreement (within factor 1.5) with 2016 and 2017 measurements
- When scaled with integrated luminosity given the old normalisation results are highly overestimated

Rubén García Alía, November 15th, 2017 *HL-LHC annual meeting*

Primary Collimators (left jaw) - DPA - 7 TeV - 8.4x10¹⁶ protons lost 10 TCP.C in MoGR — TCP.C in AC150GPH 0.4x0.4mm² TCP.C in AC150GPH Skew in MoGR TCP.C in MoGR 0.4x0.4mm² Skew in AC150GPH 1 0.10.01 0.001 0.0001 -20 -10 0 10 -30 20 30

Longitudinal Distance from center of collimator (cm)

DPA

E. Skordis

E. Skordis

E. Skordis

Conclusions

- A. New scaling method based on proton circulation time (ps) much better predictability based on 2015-2017 data
- A factor of ~10 less total proton lost in the collimation system compared to the old scaling with luminosity
- Revaluation for predicted DPA values for the HL-LHC lifetime (8.4x10¹⁶ protons lost)

Collmator -> Material ↓	Primary Horizontal	Primary Skew	Secondary in MoGR (with Mo coating)
MoGR	0.3	2.5x10 ⁻³	4x10 ⁻⁴
AC150 (Mo coating)	0.12	9x10 ⁻⁴	(2x10 ⁻³)

- B. New results (both DPA and Energy density) :
- For Skew collimator in both MoGR and AC150GPH
- For newly considered Mo coating -> Energy density gradient between coating and MoGR could cause stresses?
- For primary horizontal in MoGR -> Energy density values in the order of 5kW peaked and 1.8 averaged on a 0.4*0.4 mm²

Thank you!

BACK UP SLIDES

DPA x-sec for MoGR for 1x1mm² bin size

$1.15e16p \approx 30-40 \ fb^{-1}$ a factor of ~100 more for HL-LHC

Peak power density over X for 5x5µm² bin size

Strong surface effect especially on the first 5um in X

LHC collimation system

Capable of redirecting up to 500kW of proton loss rate in order to protect the Super Conducting Magnets from quenching (stop being SC due to energy deposition -> increase in temperature)

E. Skordis

Collimation losses simulation overview

• Simulation tools used:

Sixtrack and FLUKA are simulation tools regularly used at CERN to perform LHC studies.

SIXTRACK : Single particle 6D tracking code for long term tracing in high energy rings -> complemented with dedicated interaction routines, predicts losses in collimators.

FLUKA: General purpose particle physics MonteCarlo code used for machine protection, design studies, R2E, activation, collimation -> simulates particle interaction with matter

SIXTRACK-FLUKA coupling: Sixtrack tracking capabilities utilising the FLUKA particle matter interaction models

Old Simulation Settings for TCSG.A6R7

- Beam energy: 6.5 TeV Beam 2
- Nominal collimator settings used in 2015 operation – TCP at 5.5 σ / TCSG at 8.0 σ
- Two materials considered:
- a. Graphite density: 1.67 g/cm3
- b. MoGR6400 density: 2.48 g/cm3

IR7 FLUKA geometry

• Long Straight Section

• Left Dispersion Suppressor + Arch up to cell 14

IR7 2013 Collimation Quench Test FLUKA – Sixtrack Simulations

IR7 2015 Evaluating collimation losses

IR7 2015 Evaluating collimation losses

ARIES 1st Workshop WP17 Torino 2

Torino 28/11/2017

E. Skordis

6.5 TeV FLUKA-Sixtrack simulations 24

DPA in TCP jaws $(1.15 \times 10^{16} \text{ protons lost})$ – preliminary results

