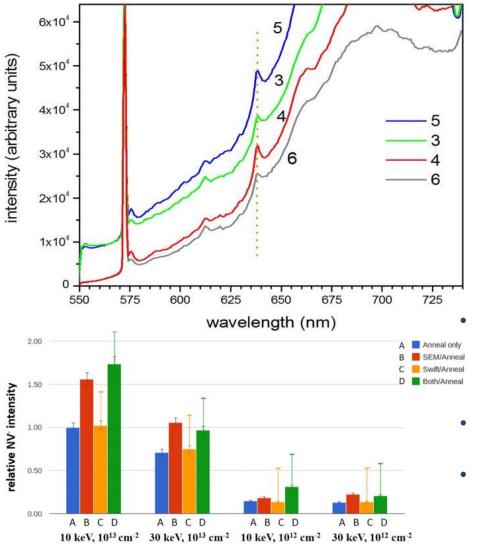
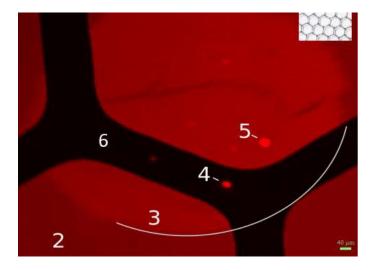
Task 17. 5 description

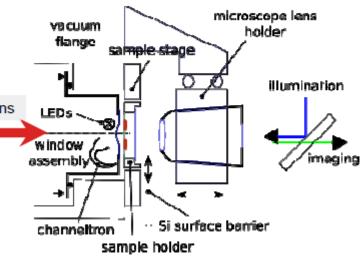

Task 5: Broader accelerator and societal applications (M. Tomut – GSI)

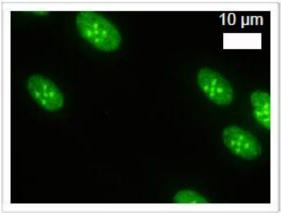

This task will follow broader applications of new developed materials for high-power accelerators, space, society (energy, medicine, computing)

- Irradiation induced defect centers in diamond for luminescent screens, medical imaging and quantum computing.
- Application of novel materials for high power targets, beam catchers, beam windows.
- Applications for advanced engineering solutions, efficient energy solutions, space.
- Applications for thermal management.

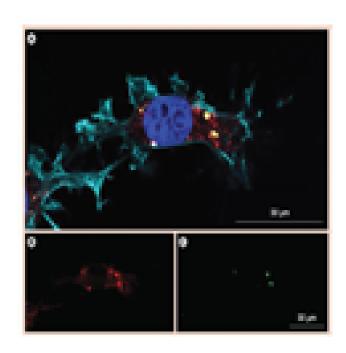
Participants: CERN, GSI, Brevetti Bizz, RHP Technology

Local NV-center formation by electronic excitation from swift, heavy ions – yields after thermal annealing


J. Schwartz, et al., J. Appl. Phys., 2014 NV yields higher by factor 1.7x for ebeam and then thermal annealing vs. thermal annealing alone (850°C, 1 h, in vacuum)


But no evidence for additive effect of swifts and thermal annealing Formation yield is ~0.1 of yield from high fluence e-beam and ~0.02 of yield from thermal annealing

absolute NV/N $\sim 10^{-4} - 10^{-3}$


Biophysics and medical applications

Radiation effects in cells-Ion beam microprobe

Functionalized nanodiamond particles for medical imaging

Milestones

Milestone number ¹⁸	Milestone title	WP number ⁹	Lead beneficiary	Due Date (in months) ¹⁷	Means of verification
MS58	Organisation of PowerMat kick-off meeting (Task 17.1)	WP17	1 - CERN	6	Agenda, summary report
MS59	Irradiation campaigns at GSI for radiation hardness studies (Task 17.3)	WP17	23 - POLITO	27	Report to StCom
MS60	Irradiation effects analysis (Task 17.3)	WP17	1 - CERN	36	Report to StCom
MS61	Comparative compendium of materials developed (Task 17.2)	WP17	1 - CERN	40	Report to StCom
MS62	Dissemination of R&D results on novel materials for accelerator and societal applications (Task 17.5)	WP17	12 - GSI	46	Report to StCom

Deliverables

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type ¹⁵	Dissemination level ¹⁶	Due Date (in months) ¹⁷
D17.1	Material characterization	1 - CERN	Report	Public	12
D17.2	Irradiation effect simulations	1 - CERN	Report	Public	44
D17.3	Irradiation test results	23 - POLITO	Report	Public	46

ARIES

Activities

- 1. Optimize metal matrix for better response to fast extracted heavy ion beams -ongoing with RHP
- 2. Optimize diamond particle sizes and distribution for different applications– to be started (RHP-GSI)
- 3. Optimize color centers in diamond for different applications (luminescence screens, QD's and medical imaging) using different doping recipe- GSI, collaboration LBNL

Contributions to task 17.5, session

11:45 - 11:55 David Grech

Development of new diamond based composites for luminescence screens

11:55 - 12:20
Pascal Simon et al.

First characterization tests and planned experiments on diamonds and diamond based composites for luminescence applications