Low Density Carbon Based Material Testing through High Energy Proton Beams at CERN for BIDs* applications

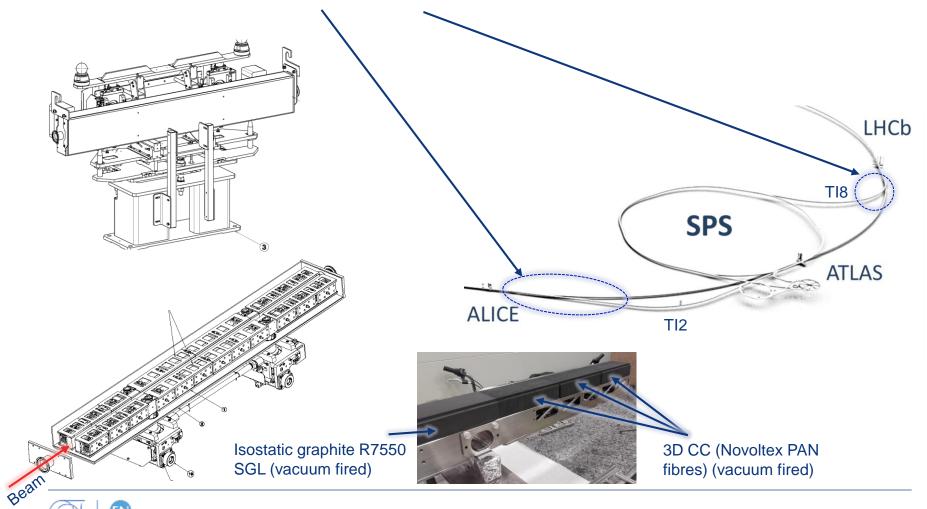
High Radiation to Material nº28 High Radiation to Material nº35 and 2018 planned experiments

Summary and preliminary outcomes

1st Workshop of ARIES WP17 Power Mat

François-Xavier Nuiry, Inigo Lamas Garcia, Mark Butcher, Maxime Bergeret, Lucian-Mircea Grec, Stefano Pianese, Anton Lechner and all the HRMT28&35 teams

CERN EN-STI-TCD 27/11/2017



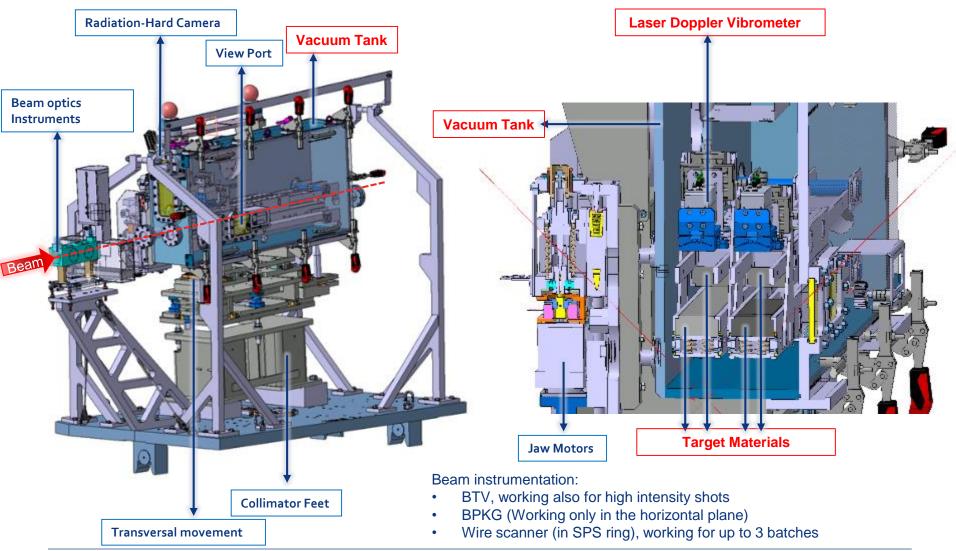
Material Studies in the framework of HL-LHC and LIU projects

6+6 new collimators in Ti2 and Ti8

HiRadMat 28

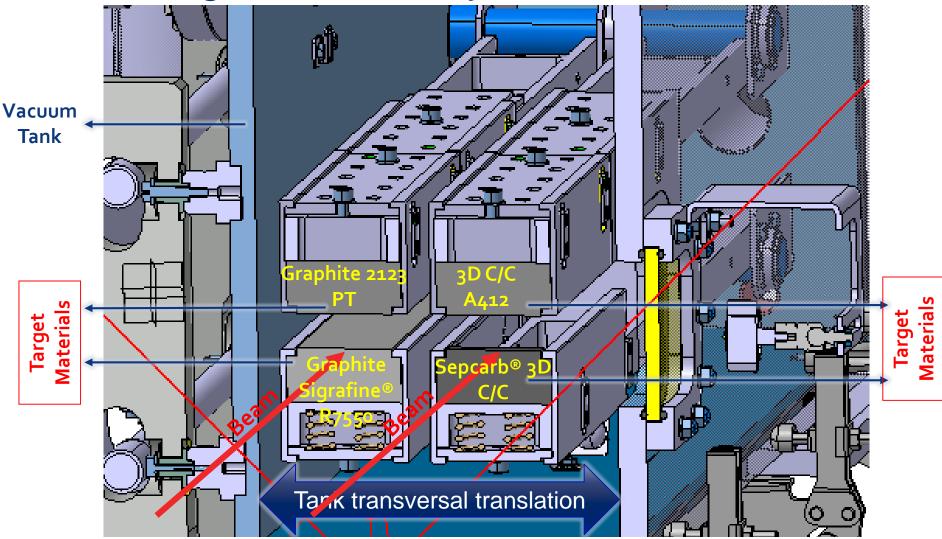
Motivations for HRMT28

1. Assess the Integrity of **Graphite** for TCDIs and TDIs during Run 3 and test an alternative material: **3D CC**. The goal is to reproduce the highest intensity beam that the TCDI and the TDI can see during their life time.

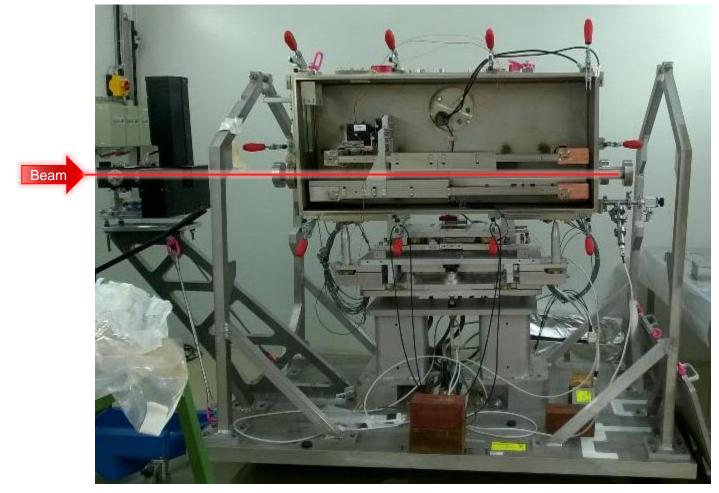

Beam	Intensity	Sig X[mm] × Sig Y[mm]	Max Temperature [°C]	M-C Safety Factor*
Run 3 BCMS	5.76 E13	0.320×0.511	1450	0.8 [~1]
HiRadMat requested beam	3.46 E13 (originally requested 1.3 E11 ppb)	0.313×0.313	1342	0.75 [0.96]
HiRadMat alternative beam (phase II)	2.6 E13	0.25×0.25	1371	[0.97]

2. Cross-check simulations.

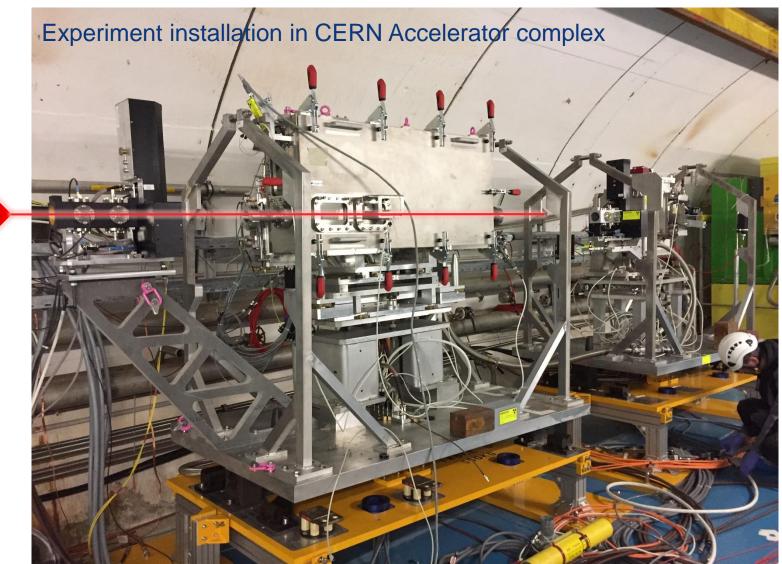
*The Mohr Coulomb safety factors are calculated with a graphite tensile limit of 30 MPa, and the values between brackets consider a graphite tensile limit of 40 MPa which is the value considered by SGL for the R7550 graphite.



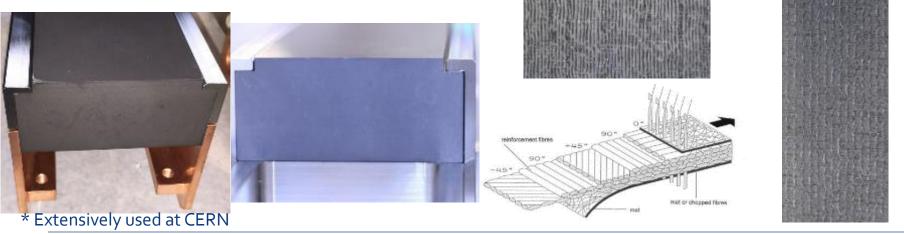
The High Radiation to Materials experiment nº28: Overview


The High Radiation to Materials experiment nº28: target material layout

The Experimental Set Up


Experiment preparation in CERN Radioactive Bunker

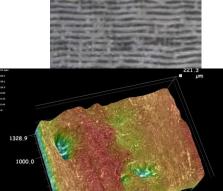
The Experimental Set Up



Beam

Materials tested

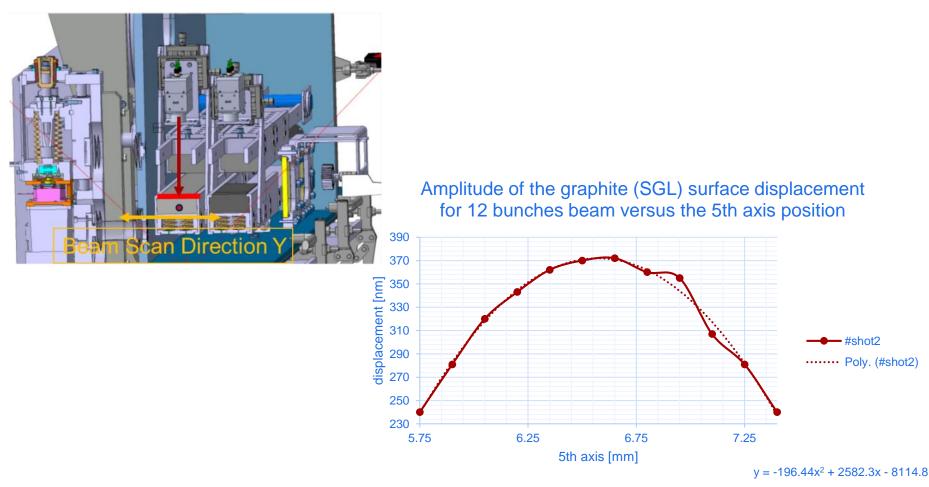
	Isostatic gra	phite	3D	CC
	Sigrafine® R4550 *	2123 PT	Sepcarb ®	A412
Density [g/cm³]	1.83	1.84	>1.80	1.7
Thermal Conductivity [W. ℃ ⁻¹ .m ⁻¹]	100	112	Non-Disclosure Agreement	-
Coefficient of Thermal Expansion 10 ⁻⁶ [C-1]	4	5.6	2	-
Young's modulus [GPa]	11.5 (dynamic)	11.4	Non-Disclosure Agreement	15
Tensile Strength [MPa]	40 35 ^D			e 3 directions o®), 60 (A412)
MST [°C]	>2600	2760	3000	-





3D CC Material production summary

- PAN "White"
- Pre-carbonisation
- Peroxyded PAN
- Getting a wire
- Getting a 2D bidirectional peroxyded .
- Tissue + mat association
- Wrapping (cylindrical of flat)
- Needling
- Getting 3D block
- High temperature carbonisation
- Densification. Low pressure and High temperature (methane / propane) \rightarrow Carbon deposition on fibbers and hydrogen removal.
- \rightarrow Very pure Carbon Matrix.
- Several densification steps done for CERN.



500.0

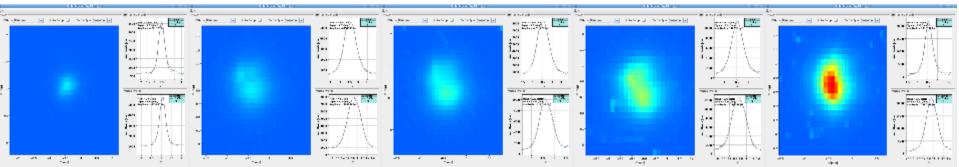
1500 (

Optometer alignment with the beam (graphite)

A precise alignment of the LDV with the beam was achieved (better than 0.15 mm)

High intensity shot analysis

*under investigations


Target	Time	Intensity	Sigma X (mm)	Sigma Y (mm)	Impact parameter requested	Impact parameter possibly got*
SGL R7550® graphite	19h09min52s	3.23E+13	0.2	0.28	1.5 <i>o</i>	3.3 <i>o</i>

Discussions about the impact parameter

BTV524 OD 0 – 1 bunch

BTV524 OD 0.7 – 12 bunches

BTV524 OD 1.3 – 72 bunches BTV524 OD 2 – 216 bunches BTV524 OD 2 – 288 bunches

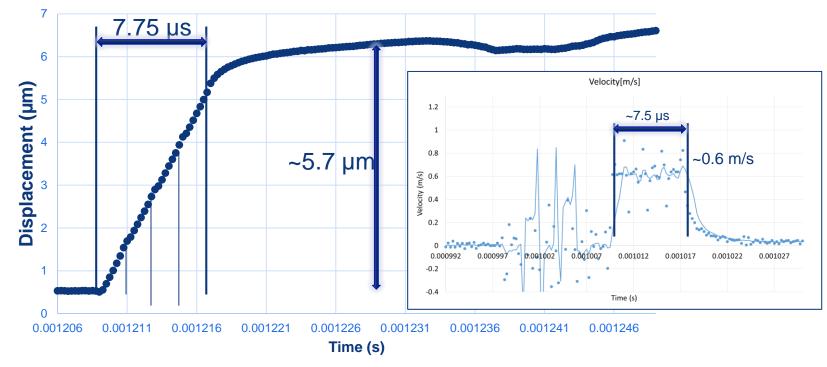
3D CC								
Number of bunch	Screen	Filter [OD]	H[mm]	V[mm]				
1 bunch	SiC	0-0 [0]	-0.401	1.070				
12 bunches af.								
Correction	SiC	1-0 [0.7]	-0.452	0.868				
72 bunches	SiC	2-1 [1.3]	-0.463	0.637				
216/288 bunches	SiC	3-0 [2]	-0.448	0.730				
Diff [HIS - 1 Bunch]	SiC		-0.047	-0.340				

Observed for 3D CC in one direction and for graphite in the other direction!

Jaw surfaces (ASL 3D CC and SGL Graphite)

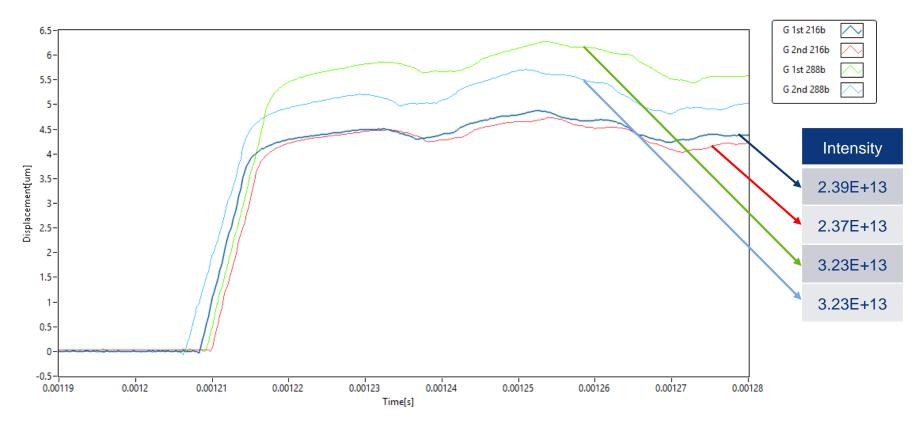
After 2x216 and 2x288 bunches shots on graphite

Before impact on graphite



Graphite (SGL) surface displacement when impacted

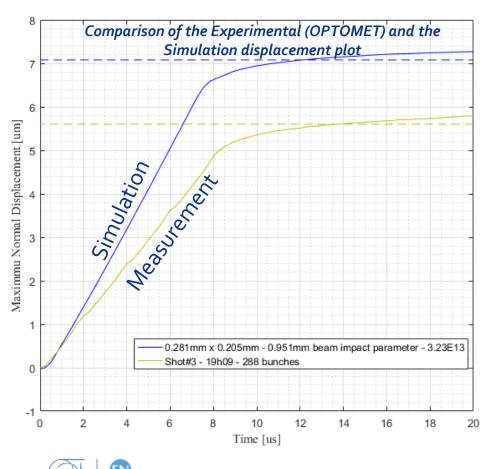
4.9 kJ /cm3 of peak energy deposition

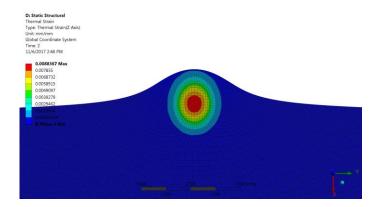

Graphite R7550 (SGL) surface displacement during the 1st 288 bunches beam impact

- 1. <u>Ramping displacement:</u> The proton beam interacts with the Graphite and continuously deposes energy.
- 2. <u>Quasi-static step:</u> After the beam passage and regarding the very low time scale, the adiabatic thermal response fixes the thermal-strains. The structural response is quasi-static.

Graphite (SGL) surface displacement for 4 consecutive high intensity shots

- The very similar (shape) surface displacement curves over time shows that no beam induced damage occurs on the material, shot after shot;
- The amplitude difference for the last two shots can be due to the impact parameter difference (last pulse is 0.3 mm deeper).




Simulated impacts on R7550 Graphite

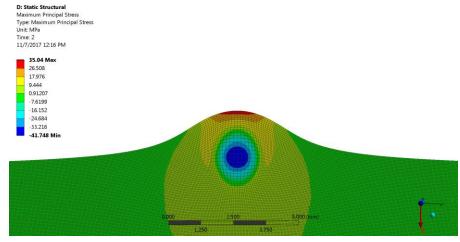
Courtesy: Maxime Bergeret EN/STI-TCD CERN

The thermo-structural responses of the material is calculated in ANSYS by importing the FLUKA energy map :

- Peak temperature: **1608°C**
- Bumping amplitude: 7.08µm

Thermal strain (Scale: X300)

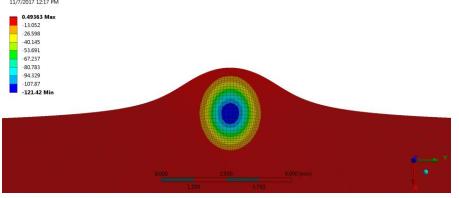
Error between Experimentation and Simulation:


- The curve are very similar with ramping and stepping displacement at the end of the pulse (7.2µs);
- <u>26% Amplitude error.</u>

Simulated impacts on R7550 Graphite

	Simu	lation	Measurement
	1.5σ	3.3σ	Under discussions
Surface displacement	8.20 μm	7.08 µm	~ 5.7 µm
Maximum Principal Stress	67 MPa	35 MPa	-
Minimum Principal Stress	-126 MPa	-121 MPa	-

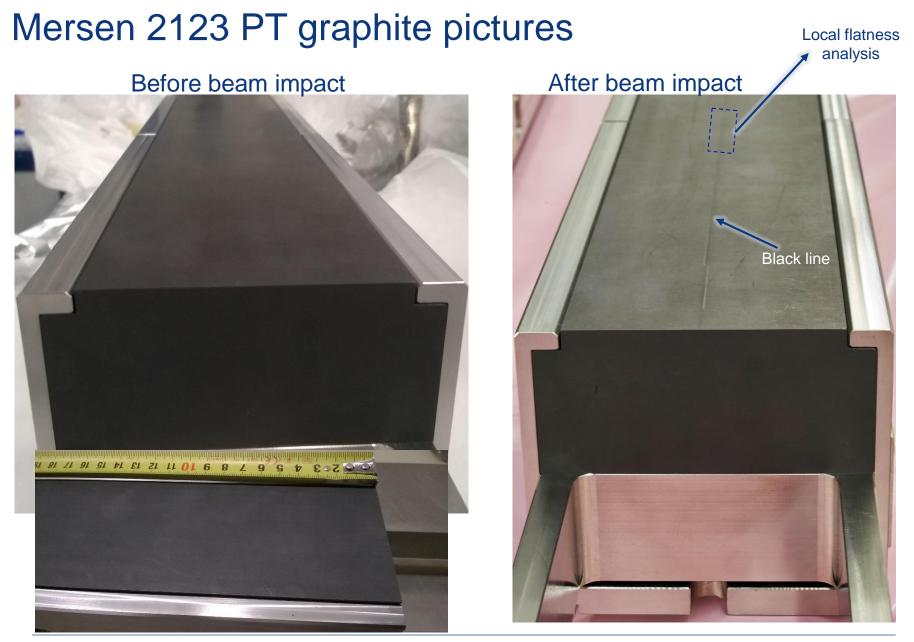
At room temperature the limits are:


- Tensile Strength: 38.5MPa (SGL Tensile Tests)
- Compressive Strength: 130MPa (SGL Datasheet)

Maximum principal stress after high intensity shot

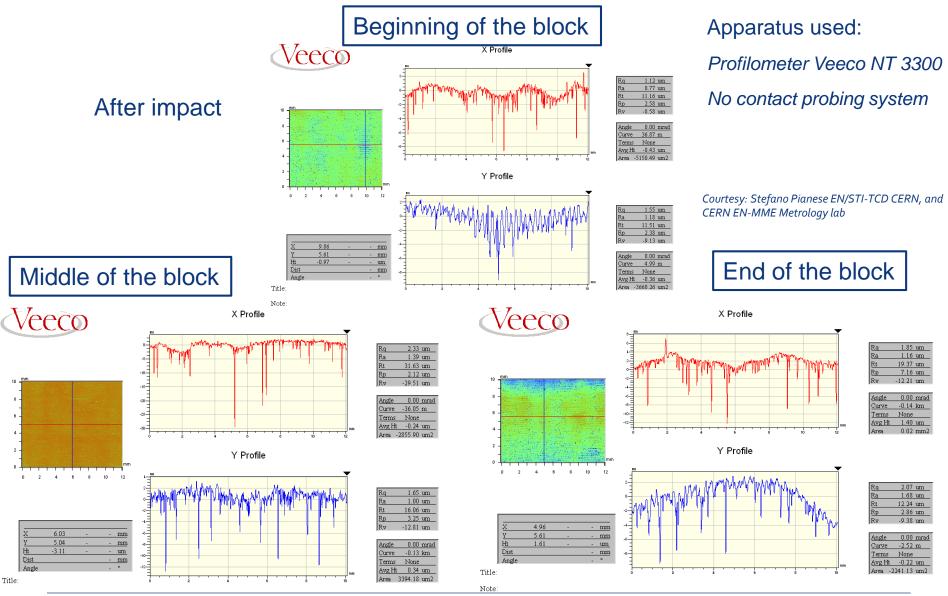
Courtesy: Maxime Bergeret EN/STI-TCD CERN

Minimum principal stress after high intensity shot

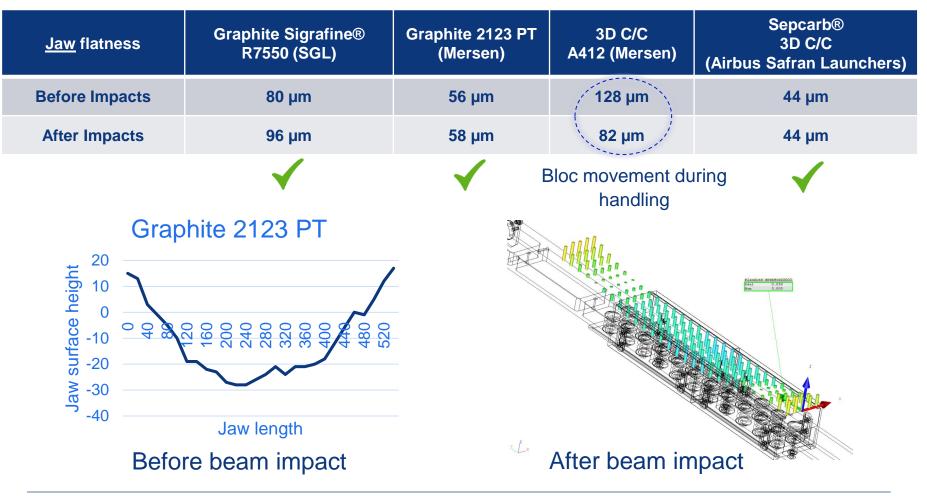


Ongoing studies

Numbers of parameters influence the thermo-structural response and the measured displacements:


- 1. The Material properties implemented into ANSYS, and especially, Cp [J/kg/C]; CTE [/C];
- 2. The beam dimensions σ_H ; σ_V [mm];
- 3. The position of the Beam into the Graphite, Beam Impact Parameter;
- 4. The OPTOMET pointing precision, 5th Axis tuning;

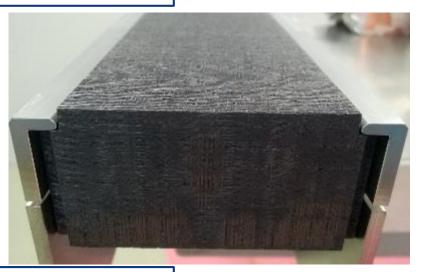
SPSXTCDIL0003_Mersen Graphite → Veeco Inspection



Targets (jaws) metrology measurements (summary)

Courtesy: Stefano Pianese EN/STI-TCD CERN, and CERN EN-MME Metrology lab

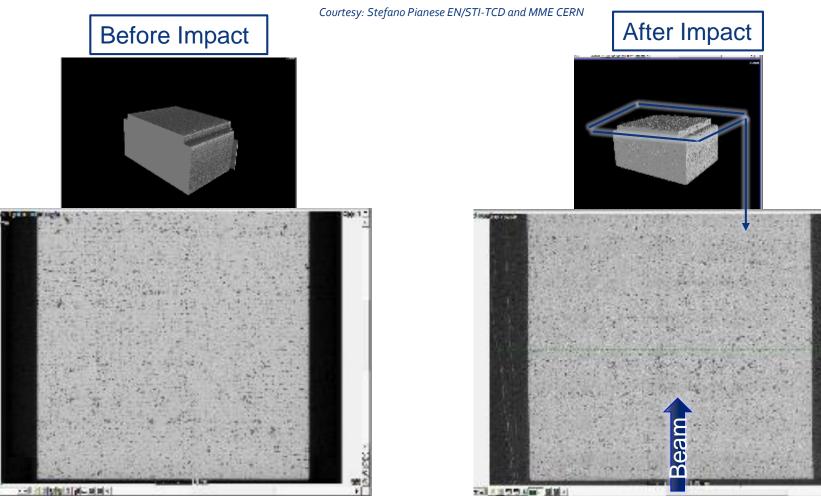
Jaw flatness measurement before and after beam impact:



SPSXTCDIL0006_ASL_3D C-C 170 mm → Before and after impact,

visual Inspection.

Before impact


After impact

Courtesy: Stefano Pianese EN/STI-TCD CERN

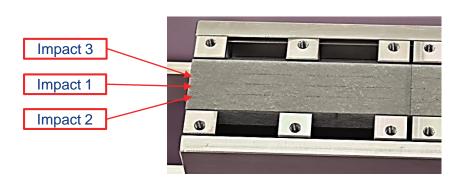
Micro tomography (ESRF collaboration)

The two pictures have been taken at the same location, before and after impact, where the beam has impacted.

HiRadMat 35

HRMT 35 Aim

- Assess the level of damage on the coating that the current TDI (LHC Injection absorber) could face (grazing impact).
- For LS2 collimators, experience on the coating behaviour for different coatings configurations and material subtracts.


After impact

Graphite with Cu coating

O.3mm nominal spot size

440 GeV

CFC with Mo coating

Graphite with Mo coating

Courtesy: Inigo Lamas EN/STI-TCD CERN

3.5E13 protons per pulse

Main outputs

- Graphite coated with Mo and graphite coated with Cu OK
- Tatsuno CFC with Mo coating OK
- Possible materials for secondary collimators
- Actual TDI (Graphite + Cu coating) shall survive the ongoing beams

Summary

- SGL Graphite and ASL 3D CC are undamaged after several high intensity shots;
- SGL Graphite and ASL 3D CC are "behaving" as expected by the simulations;
- Metrology is showing the same global shape before and after impact;
- HD pictures are showing no differences between before and after impact, excepted for the 2123PT graphite.
- Micro-tomography of the 3D CC shows no difference before and after impact.
- Simulation results are sensitive with the **spot size**, the **beam impact parameter and intensity**, the **material model.**
- The actual TDI shall survive ongoing beams.

IPAC Paper:

F-X. Nuiry^{†1}, O. Aberle, M. Bergeret, A. Bertarelli, N. Biancacci, R. Bruce, M. Calviani, F. Carra, A. Dallocchio, L. Gentini, S. Gilardoni, R. Illan, I. Lamas Garcia², A. Masi, A. Perillo-Marcone, S. Pianese, S. Redaelli, E. Rigutto, B. Salvant, Design and Prototyping of New CERN Collimators in the Framework of the LHC Injector Upgrade (LIU) Project and the High-Luminosity (HL-LHC) Project

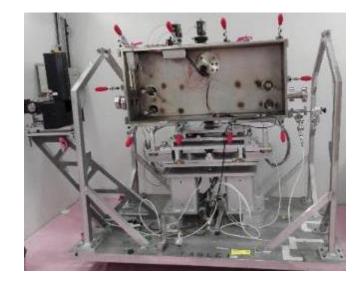
Future Experiments TCDIL DEEP and TDIS-TZM

Assess the TDIS and TCDIL jaw flatness for extreme accidental deep impacts in the jaw.

Proposed experiment configuration:

One jaw with the updated design

One jaw with design baseline



Thanks for your attention

Multi-experiment tank

- HRMT 28 Phase I : April 2016
- HRMT 28 Phase II : June 2017
- HRMT35 : August 2017

- Allows to <u>shorten</u> time from one experiment to another one, <u>save money</u>, and <u>reduces</u> radioactive waste.
- Could be used for other HRMT experiments:

Big volume: 545*247*1234 mm³ with large access;

LHC Collimator size compatible;

Several vacuum feedthroughs;

5 independent translation axis;

- 2*2 beam windows;
- 4 view ports.

HRMT 28 in a nutshell

- 4 low density materials impacted for BID applications;
- About **15 people** involved in the <u>experiment operation</u> itself;
- About 1.12E15 total POT spread over 3 runs;
- 23 hours spent in the CCC, aligning the experiment and data acquisition;
- 3 Gb of collected data;

Residual dose	After 9h of cool	After 44h of cool
rate	down	down
PMIHR02	1 mSv/h	227 µSv/h

Summary of the experiment

13/06/2017 → Impacts on Graphite jaws

Start at $11h00 \rightarrow$ Beam Steering done with 12 bunches beams;

14h40 \rightarrow End of the BBA (1 bunch);

- $17h13 \rightarrow$ End of the Optomet LDV alignment (12 bunches beam);
- 18h32 \rightarrow End of high intensity shots test (jaws opens);
- 19h27 \rightarrow End of the high intensity shot (216/288 bunches) on the SGL graphite;
- 19h57 \rightarrow End of the high intensity shot (216/288 bunches) on the MERSEN graphite.

16/06/2017 → Impacts on 3D CC jaws

Start at 9h46 \rightarrow Beam Steering done with 1 bunch beam;

12h43 \rightarrow End of the BBA (1 bunch);

LHC Filling

14h39 \rightarrow End of the 12 bunches beam for statistics;

- 15h35 \rightarrow End of the Optomet LDV alignment tentative (12 bunches beam);
- 18h00 \rightarrow End of the Optomet LDV alignment tentative (72 bunches beam);
- 18h53 \rightarrow End of high intensity shots test (jaws opens);

 $19h29 \rightarrow$ End of the high intensity shot (216/288 bunches) on all 3D CC jaws.

Summary of the experiment

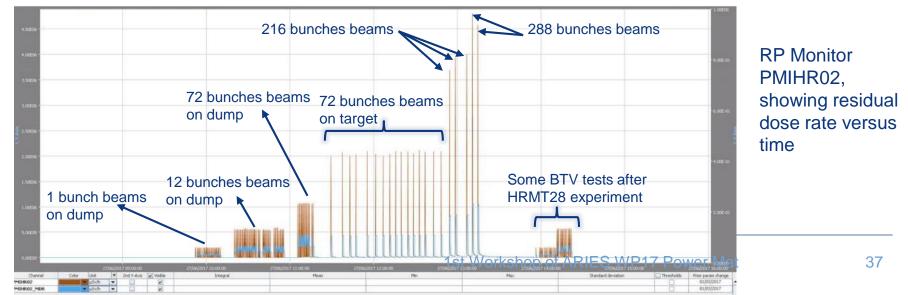
27/06/2017 → New impacts on 3D CC jaw (ASL)

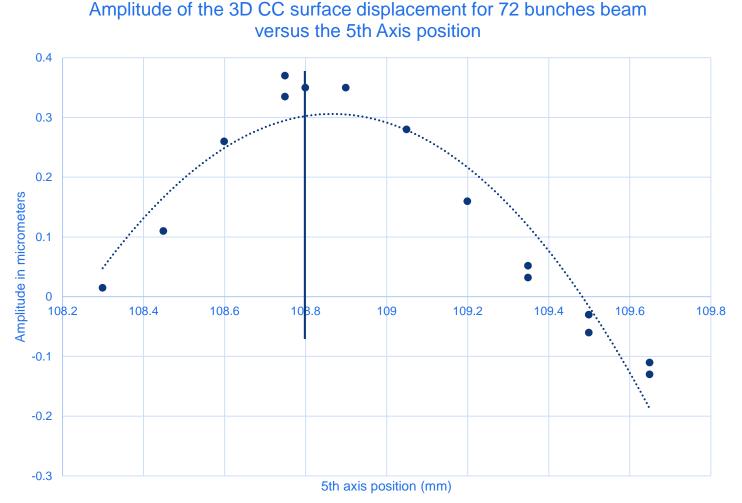
Start at 9h00 → Beam position checks with 1 bunch and 12 bunches beams. Adjustment of the vertical position of the beam, cross check with BTV;
10h51 → Start of 72 bunches extraction for optomet alignment;
12h47 → End of the Optomet LDV alignment (72 bunches beam);
12h57 → Start of high intensity shots on ASL jaw;
13h13 → End of the high intensity shot (216/288 bunches) on the ASL jaw.

High intensity shots on the 13/06/2017

				BTV.524 measurements					
Target	Time	Intensity	Sigma X (mm)	Sigma Y (mm)	Position in X (mm)	Position in Y (mm)			
	18h43min28s	2.39E+13	0.44	0.49	-0.22	0.9			
SGL	18h57min04s	2.37E+13	0.43	0.42	-0.29	0.89			
R4550® graphite	19h09min52s	3.23E+13	0.42	0.48	-0.3	0.91			
graphic	19h27min28s	3.23E+13	0.43	0.44	-0.23	0.85	Jaw moved by 0.3mm within the beam		
	19h42min40s	2.42E+13	0.49	0.28	-0.3	0.88			
Mersen	19h46min40s	2.44E+13	0.52	0.3	-0.33	0.86			
2123UHP 5®	19h50min40s	3.25E+13	0.4	0.24	-0.29	0.91			
graphite	19h57min04s	3.25E+13	0.38	0.39	-0.32	0.79	Jaw moved by 0.3mm within the beam		

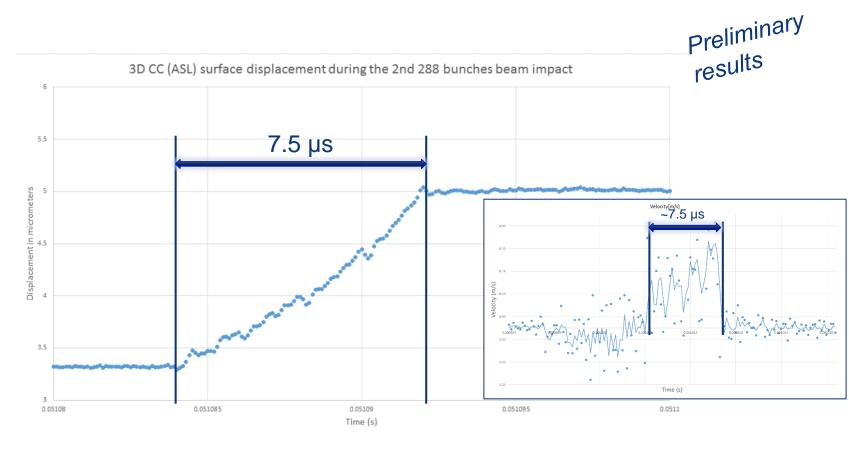
High intensity shots on the 16/06/2017


				BTV.524 me	easurements	
Target	Time	Intensity	Sigma X (mm)	Sigma Y (mm)	Position in X (mm)	Position in Y (mm)
	18h42min24s	2.77E+13	0.29	0.4	-0.32	0.95
ASL	18h52min48s	2.94E+13	0.28	0.4	-0.28	1.02
Sepcarb 3D CC	19h26min24s	3.82E+13	0.3	0.34	-0.33	0.88
	19h30min24s	3.81E+13	0.36	0.29	-0.36	0.9
	19h00min00s	2.91E+13	0.26	0.38	-0.32	1
Mersen	19h04min00s	2.91E+13	0.28	0.34	-0.31	1
3D CC	19h20min00s	3.89E+13	0.28	0.33	-0.32	0.92
	19h22min24s	3.77E+13	0.28	0.37	-0.33	0.91


High intensity shots on the 27/06/2017

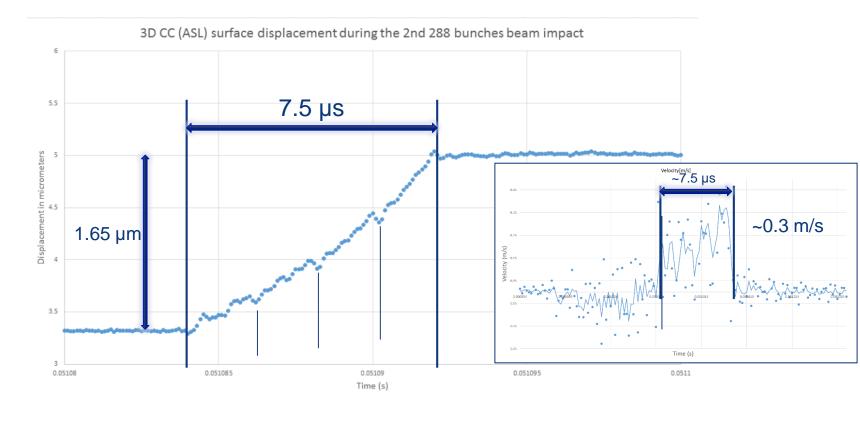
	_			BTV.524 me	asurements		
Target	Time	Intensity	Sigma X (mm)	Sigma Y (mm)	Position in X (mm)	Position in Y (mm)	
	12h54min02s	2.47E+13		No Signa	al on BTV		
ASL	12h58min07s	2.49E+13	0.24	0.25	-0.46	0.73	Strange signal on LDV
Sepcarb	13h06min14s	2.50E+13	0.24	0.24	-0.45	0.74	
3D CC	13h10min21s	3.35E+13	0.2	0.23	-0.44	0.73	
	13h14min26s	3.34E+13	0.2	0.22	-0.44	0.72	

For this run, a red filter in front of the BTV camera in TT61 has been installed


Optometer alignment with the beam (3D CC)

A precise alignment of the LDV with the beam was achieved (better than 0.15mm) 🗸

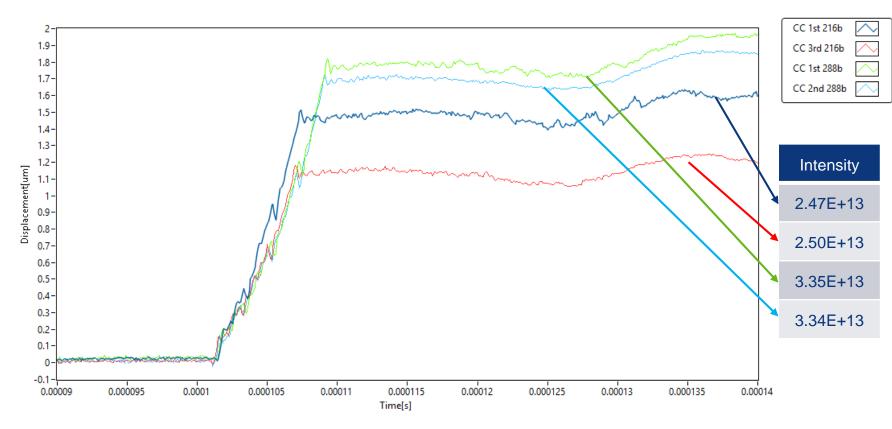
3D CC surface displacement when impacted (LDV 10 MHz)



Quick analysis:

- Correct bunch length
- Expected magnitude of the surface displacement

3D CC surface displacement when impacted (LDV 10 MHz)



Quick analysis:

- Correct bunch length
- Expected magnitude of the surface displacement

3D CC (ASL) surface displacement for 5 consecutive high intensity shots (LDV interface 10 MHz), 27-06-2017 (one 216 b shot not recorded)

- The very similar surface displacement curves over time are is an indicator that no beam induced damage occurs on the material, shot after shot.
- The amplitude difference for the 1st and 3rd shots at 216b can be due to a small beam spot jitter in X.



Experiment dismantling in 867/R-P58

Installation in a fully cleaned bunker

The opened vacuum vessel with jaws removed



1st Workshop of ARIES WP17 Power Mat

Targets (jaws) dismounting in 867/R-P58

RP measurements on the 25.07.17 at 16h45

1 / contact: 320 μ Sv/h, 10 cm: 70 μ Sv/h, 40 cm: 25 μ Sv/h 2 / contact: 370 μ Sv/h, 10 cm: 73 μ Sv/h, 40 cm: 27 μ Sv/h 3 / contact: 280 μ Sv/h, 10 cm: 52 μ Sv/h, 40 cm: 15 μ Sv/h 4 / contact: 280 μ Sv/h, 10 cm: 63 μ Sv/h, 40 cm: 17 μ Sv/h

High intensity shots on the 13/06/2017

Target	Time	Intensity	BTV Sigma X (mm)	BTV Sigma Y (mm)	BTV Position in X (mm)	BTV Position in Y (mm)		Calculated Sigma X (mm)	Calculated Sigma y (mm)	Position in X (mm) BPKG	Impact parameter expected
	18h43min28s	2.39E+13	0.44	0.49	-0.22	0.9		0.203054	0.232736		
SGL	18h57min04s	2.37E+13	0.43	0.42	-0.29	0.89		0.208802	N/A		
R4550® graphite	19h09min52s	3.23E+13	0.42	0.48	-0.3	0.91		0.205414	0.280867		??
	19h27min28s	3.23E+13	0.43	0.44	-0.23	0.85	Jaw moved by 0.3mm within the beam	0.204648	0.286383	Meaningless because BPKG	1.5 σ
	19h42min40s	2.42E+13	0.49	0.28	-0.3	0.88		0.192967	0.283735	not perfectly aligned with BTV524	
Mersen	19h46min40s	2.44E+13	0.52	0.3	-0.33	0.86		0.197366	0.285878		
2123UHP5 ® graphite	19h50min40s	3.25E+13	0.4	0.24	-0.29	0.91		N/A	0.275063		
	19h57min04s	3.25E+13	0.38	0.39	-0.32	0.79	Jaw moved by 0.3mm within the beam	0.195948	0.276492		

High intensity shots on the 16/06/2017

Target	Time	Intensity	BTV Sigma X (mm)	BTV Sigma Y (mm)	BTV Position in X (mm)	BTV Position in Y (mm)	Calculated Sigma X (mm)	Calculated Sigma y (mm)	Impact parameter expected	
	18h42min 24s	2.77E+13	0.29	0.4	-0.32	0.95	0.200881	0.388974		
ASL	18h52min 48s	2.94E+13	0.28	0.4	-0.28	1.02	0.194461	0.283627		
Sepcarb 3D CC	19h26min 24s	3.82E+13	0.3	0.34	-0.33	0.88	0.203367	0.293693	1.5 σ	
	19h30min 24s	3.81E+13	0.36	0.29	-0.36	0.9	0.19739	0.288927	1.5 σ	
	19h00min 00s	2.91E+13	0.26	0.38	-0.32	1	0.20366	0.256023		
Mersen	19h04min 00s	2.91E+13	0.28	0.34	-0.31	1	0.191674	0.279542		
3D CC	19h20min 00s	3.89E+13	0.28	0.33	-0.32	0.92	0.194497	0.298098	1.5 σ	
	19h22min 24s	3.77E+13	0.28	0.37	-0.33	0.91	0.204685	0.295752	1.5 σ	

