

EU program update

Monica Ferraris Politecnico di Torino, Italy

Carmen Garcia Rosales cgrosales@ceit.es CEIT, Spain

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

National Laboratory ^c 2017

Pressure-less joining materials: glass-ceramics

- These torsion tests are suitable to measure the shear strength of a joined component only if the joining material is brittle *and if the fracture propagates exclusively in the joined area*.
- In this ideal situation, the measured shear strength is geometry independent
- In the case of fracture outside the joined area the measured value is *the torsion resistance of the joined sample,* dependent from the substrate mechanical properties

M. Ferraris - Politecnico di Torino - Italy Department of Applied Science and Technology

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

Glass-Ceramic Joining (SAY) of SiC/SiC

Sinco

Glass cerami c	comp ositio n	Tg (°C) parent glass	CTE parent glass (10 ⁻ 6)	Joining process (°C) Pressure-less	CTE glass- cerami c (10 ⁻ 6)	T soft Glass- ceramic	Crystalline phases (glass-ceramic)	B C A B C A	12 io1 [121] (311 11 01 01 01 01
SAY	SiO2 Al2O3 Y2O3	910	3.8	1375 1235 (crystallization)	5.5	975	Mullite, cristobalite, keivyite	1 pp)	(152) 17 020 17 200 0 110 110 (001] Ala

122 ± 10 MPa bending strength *before*

89±17 MPa bending strength *after irradiation* at 820 °C 3.2* 10 ²⁵ n/m² (E>1MeV, 5 dpa C) IEA SIC/SIC Coordination Meeting 8th November 2017

Glass-Ceramic Joining (SAY) of SiC/SiC

Preliminary tests in autoclave

High Pressure Chemical Reactor 100 ml, Supercritical Fluid Technology

(POLITO, courtesy of Prof. L. Manna)

Temperature: 312-325°C Pressure: 150 bar Stirring: 60 rpm Time to dwell temperature: 45 min Dwell time: 8 Hours Cooling time: 30 min *8-9 ppm oxygen dissolved in water*

> IEA SiC/SiC Coordination Meeting 8th November 2017

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

Pressure-less joining materials: SPS joining in collaboration with QMUL & Nanoforce, UK

- SPS direct bonding
- pressureless SPS successful with glass-ceramics as bonding material
- SPS suitable for MAX phases as bonding material

IEA SiC/SiC Coordination Meeting 8th November 2017

Flash joining of CVD-SiC coated C f/SiC composites with a Ti interlayer P Tatarko, S Grasso, TG Saunders, V Casalegno... - Journal of the European Ceramic Society, 2017 Pressure-less joining of C/SiC and SiC/SiC by a MoSi2/Si composite PK Gianchandani, V Casalegno, F Smeacetto... - International Journal of Applied Ceramic Technology, 2017 Surface engineering of SiCf/SiC composites by selective thermal removal F Valenza, V Casalegno, S Gambaro, ML Muolo... - International Journal of Applied Ceramic Technology, 2017

Joining of C/SiC and SiC/SiC with pre-sintered Ti₃SiC₂ MAX phase by SPS: 1300 °C, 50 MPa, 5 minutes

Journal of the European Ceramic Society 36 (2016) 3957-3967

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

Wrap-joining: another pressure-less joining technique suitable for porous SiC-based components

Nikon

Applied Ceramic Technology

Other «wraps» under

testing 8th November 2017

- If not differently specified, joints are between similar materials (e.g. SiC means joining between two SiC parts); SiC-mullite and Sandwiches are exceptions.
- RM-Refractory Metals
- CMC- Ceramic matrix composites
- SiC-foam_f : Silicon carbide foam
- SiSiC-Silicon carbide obtained by Liquid Silicon Infiltration (LSI)
- * silicon coating before RM-wrap

- Preliminary results of Tungsten-Wrap are promising
- Nb/Ta Wrap can be applied on several samples as with Mo-Wrap
- Wide range of combination Mo, Nb, Ta and W- Wraps individually and together

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

He-ion irradiation effects on glass-ceramics for Glass ceramics (SAY, CA) irradiated with

- 5.5 MeV He ions at an average temperature of 75 °C to a fluence of almost 2.3 10¹⁸ cm² (about 40 dpa in the ion implantation region) to simulate damage expected in nuclear plants.
- No amorphization was found even in • correspondence to the He implantation zone.
- agglomerates of He-bubbles in the • implantation region for the CA and a more homogeneous He-bubble distribution in the SAY.
- The radiation damage induced only • occasional micro-cracks, mainly located at grain boundaries (CA) or within the grains (SAY)
- Si-ion irradiation on joined samples, • ongoing

IEA SiC/SiC Coordination Meeting 8th November 2017

M. Ferraris - Politecnico di Torino - Italy Department of Applied Science and Technology ournal of Nuclear Materials 472 (2016) 28e34

He-irradiation effects on glass-ceramics for joining of SiC-base L. Gozzelino a, b, *, V. Casalegno a, G. Ghigo a, b, T. Moskalewicz

15

SiC

10 µm

Signal A = SE2

Mag = 2.00 K X

The CA joined SiC were irradiated with **5.1 MeV Si2**⁺ ions at temperature of **400 and 800°C**, corresponding to a

damage level of **5 dpa** averaged over the damage range

SiC

Irradiation at 400°C

DuET facility, **Kyoto University**

No debonding at the CA/SiC interface has been detected Crack healing→ due to swelling?

EHT = 5.00 kV

WD = 416 mm

The CA joined SiC were irradiated with **5.1 MeV Si2**⁺ ions at temperature of **400 and 800°C**, corresponding to a damage level of **5 dpa** averaged over the damage range **DuET** facility, **Kyoto University**

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

L. Goglio ^{a,*}, M. Ferraris^b

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster) Enabling Research () EUROfusion
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

INNOVATIVE CLADDING MATERIALS FOR ADVANCED ACCIDENT-TOLERANT ENERGY SYSTEMS

Overall budget: 5 M€ EU contribution + 1.5 M€ additional contributions Kick-Off Date: 1st October 2017 Project Duration: 4.5 years (54 months)

WP3. Joining of ATF clads & testing of joints/welds

J-TECH@POLITO

Advanced Joining Technology at POLITO

Prof. Luca Goglio (DIMEAS) Prof. Monica Ferraris (DISAT) Prof. Franco Lombardi (DIGEP)

Kick Off Meeting 20 ottobre 2017

J-TECH@POLITO - Advanced Joining Technology at POLITO

J-TECH@POLITO new facilities

- Customized facility for Non Destructive Testing (NDT) of joined components and materials, based on X-ray tomography
- Multipurpose joining & testing facility including heating stage/mechanical testing equipment operating in vacuum, inert and reactive atmosphere, temperature range -80;+1450 °C
- Friction Stir Welding station
- Laser Nd-YAG head to be applied on an existing 6 axis anthropomorphic robot, thermographic system for inspection

- POLITO:
 - Pressure-less joining materials:
 - glass-ceramics,
 - Refractory Metal (RM)-wrap
 - SPS joining in collaboration with QMUL & Nanoforce, UK
 - Modelling and testing of joined SiC by torsion and other tests
 - Ion irradiation of joints
 - W/Fe functionally graded joints by sputtering (poster)
 - EU project funded (II Trovatore)(October 2017)
 - Autoclave tests on joined-coated materials
 - J-TECH@POLITO funded (May 2017)
- CEIT:
 - porous SiC development for application as FCIs in DCLL blankets

Development of a SiC-sandwich material for FCIs Ceit

Candidate material for FCIs in the high-temperature DCLL: SiC

- suitable for high temperature applications
- high chemical stability
- adequate for radiation environments
- ↑ thermal & electrical conductivities → insulating SiC material: R&D needed

Possible option: SiC-based sandwich with porous & dense layers

dense CVD-SiC coating protection against PbLi corrosion & infiltration

→porous-SiC core thermal & electrical insulation

- k < ~10 W/(m·K)
- σ < ~1 S/m

Enabling Research () EUROfusion

- Production of porous SiC
- Characterization of porous & coated SiC samples: mechanical & thermal properties, electrical conductivity, corrosion tests in PbLi
- Analyze the feasibility of using a SiCbased sandwich as material for FCIs
- Exploration of possibilities for industrial fabrication

Fabrication procedure

Based in the *sacrificial template* concept: a sacrificial phase is added to the initial powder mixture \rightarrow phase removed: **pores**

1. Powder mixture

- SiC (0.3 μm)
- Sintering additives (Al₂O₃, Y₂O₃) 2.5 wt.%
- Sacrificial phase \rightarrow spherical graphite powder (MCMB, ~15 µm)

2. Uniaxial pressing

3. Sintering

4. Oxidation

700 °C \rightarrow reaction between air & graphite 10 h \rightarrow **porous samples**

SiC sandwich material: microstructure, CVD coating, properties

• 1st corrosion experiment: flat samples under static PbLi

50% porous core with a ~200 µm CVD-SiC coating

Samples after the experiment

no PbLi infiltration & no signs of corrosion in the dense coating

• 2nd corrosion experiment: flat samples under flowing PbLi

- New batch of samples → 40% porous core & CVD-SiC coating of 200-400 µm
- 11 samples tested
 - 8 subjected to a 1.8-2 T magnetic field
 - 3 outside the magnetic field as control samples
- PbLi flowing at ~10 cm/s and ~550 °C for 850 h

 no damage, no PbLi
 infiltration, no signs of corrosion of dense coating

Fabrication of porous SiC hollow samples by gelcasting method: Cell first results

Samples will be coated with CVD-SiC \rightarrow lab-scale FCI prototypes

	Initial MCMB (wt.%)	Final porosity (%)	Flexural strength (MPa)
Gelcasting	20	44	79 ± 11
Uniaxial pressing	20	42	84 ± 31

ICFRM-18 Acmor 2017

EU program update

Thank you for your attention

Monica Ferraris monica.ferraris@polito.it Politecnico di Torino, Italy

Carmen Garcia Rosales cgrosales@ceit.es CEIT, Spain