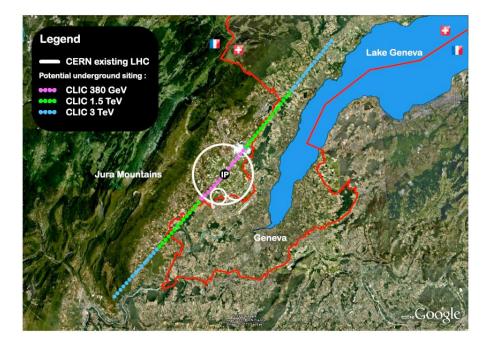
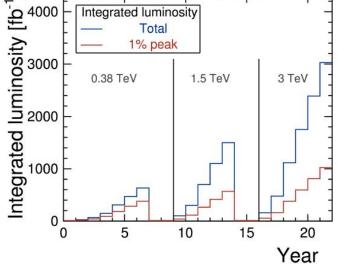

Linear collider physics at 380 GeV

lgor Boyko (CLICdp/Dubna)

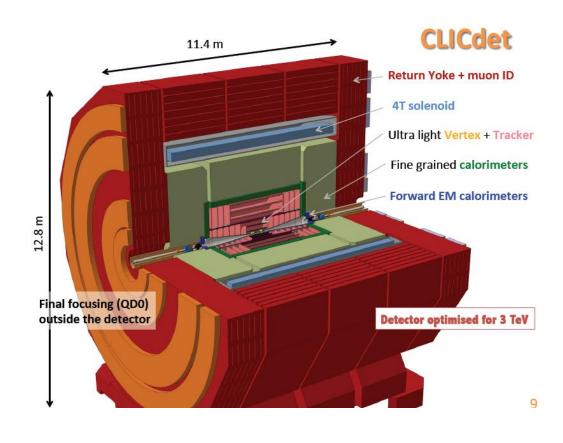
Projects of future e+e- colliders


- Future Circular Collider (FCC-ee) $-\sqrt{s} = 91-350 \text{ GeV}$
- Circular Electron-Positron Collider (CEPC) $-\sqrt{s} = 90-240 \text{ GeV}$
- International Linear Collider (ILC) $-\sqrt{s} = 250-500 \text{ GeV} (1 \text{ TeV})$
- Compact Linear Collider (CLIC) $-\sqrt{s} = 380 \text{ GeV} / 1.5 \text{ TeV} / 3 \text{ TeV}$

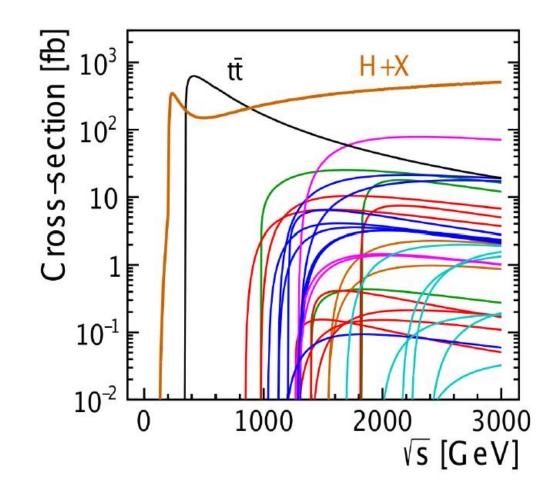
CLIC (Compact Linear Collider)


- 2-beam acceleration scheme
 - Low energy: 2.4 GeV \rightarrow 240 MeV, 100 A
 - High energy: 9 GeV \rightarrow 1500 GeV, 1.2 A
- Gradient 100 MV/m, operated at room temperature
- Energy: 380-3000 GeV (staged)
- Length: 50 km (for 3 TeV)

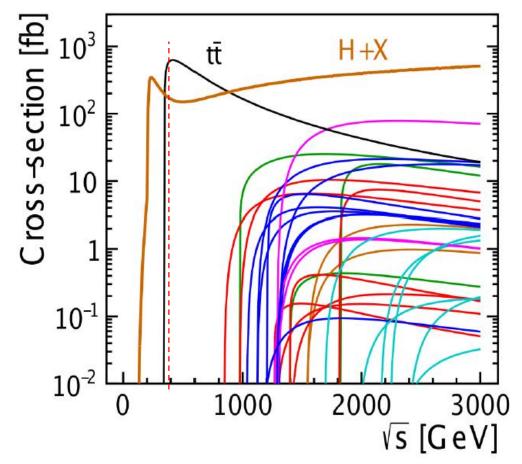
CLIC staging scenario



- Cost consideration (staging)
- Unique and wonderful physics at 380 GeV!
- Some benchmark results were obtained with "old" staging scenario, 350/1400/3000 GeV

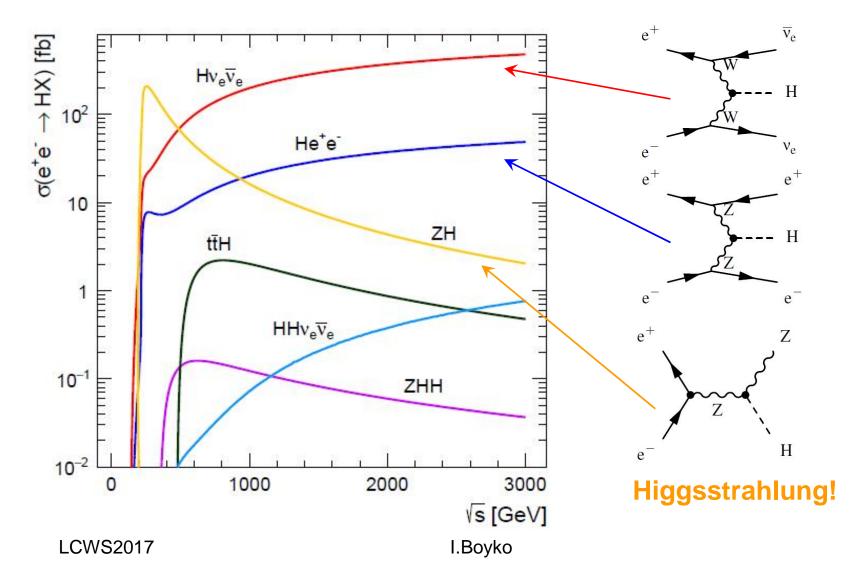

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int} (\mathrm{fb}^{-1})$
1	380	500
1	350	100
2	1500	1500
3	3000	3000

CLIC detector

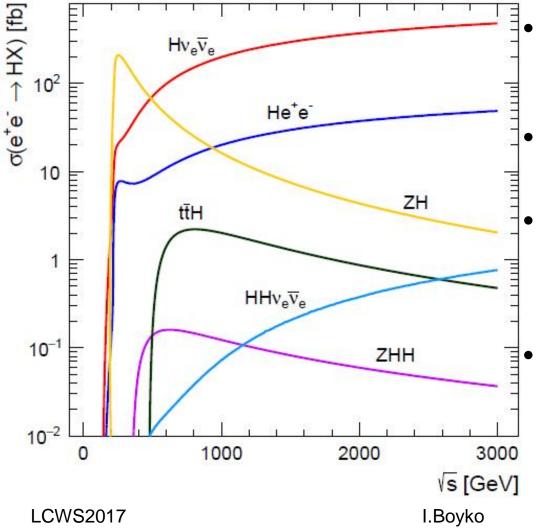


- New detector model
 CLICdet
- Replaces old options CLIC_ILD and CLIC_SiD
- Many benchmark results are still based on the old options
- See the detailed talk this afternoon!

CLIC physics versus energy

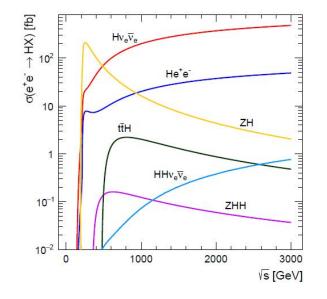


CLIC physics versus energy



- BSM physics: direct searches require the highest possible energies
 - Note: deviations from the Standard Model can be observed in lower energy precision measurements
- Initial stage at 380 GeV is optimized for Higgs and Top physics (including tt-threshold scan at 350 GeV)

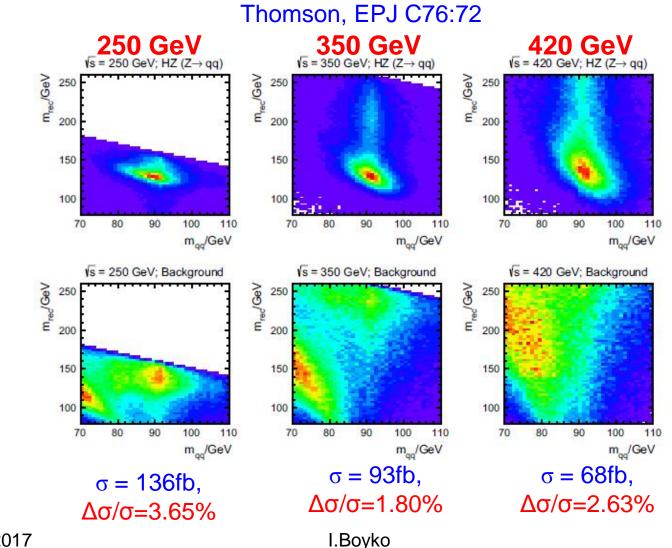
Higgs production at CLIC energies



Higgs production at CLIC energies

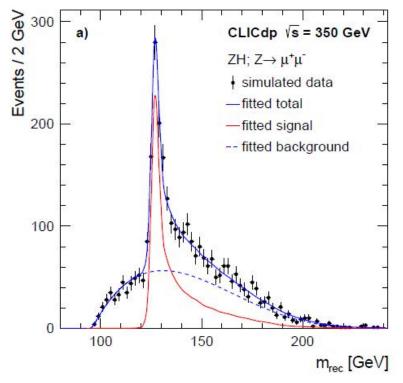
- For CLIC energies, the maximum Higgs cross-section is at 3 TeV, dominated by $ee \rightarrow Hvv$ mode
- At 250-500 GeV Higgs production is dominated by Higgsstrahlung $ee \rightarrow ZH$
- It offers the unique opportunity of model-indepentent measurement, where Higgs is predicted as a system recoiling against the Z⁰
- Although ZH cross-section peaks at ~250 GeV, the optimal precision is reached around 350 GeV

Expected Higgs statistics

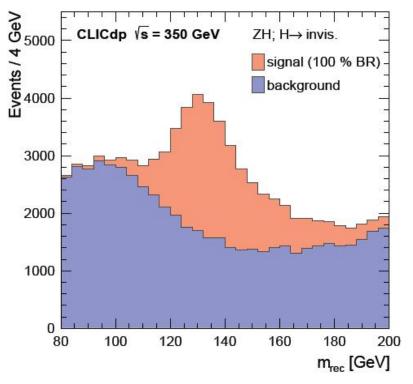


\sqrt{s}	350 GeV	1.4 TeV	3 TeV
\mathscr{L}_{int}	500fb^{-1}	1.5ab^{-1}	2 ab^{-1}
$\sigma(e^+e^- \rightarrow ZH)$	133 fb	8 fb	2 fb
$\sigma(e^+e^- \rightarrow H\nu_e\overline{\nu}_e)$	34 fb	276 fb	477 fb
$\sigma(e^+e^- \rightarrow He^+e^-)$	7 fb	28 fb	48 fb
# HZ events	68,000	20,000	11,000
# $Hv_e \overline{v}_e$ events	17,000	370,000	830,000
# He ⁺ e ⁻ events	3,700	37,000	84,000

P(e⁻/e⁻⁺)=-80/+30%: (HZ)x1.4, (Hvv)x2.34


- The really big statistics will be provided by ee → Hvv at high energy running
- However, the ZH events at 350/380 GeV will provide a unique sample of "tagged" Higgses
 - Possibility of model-independent measurements

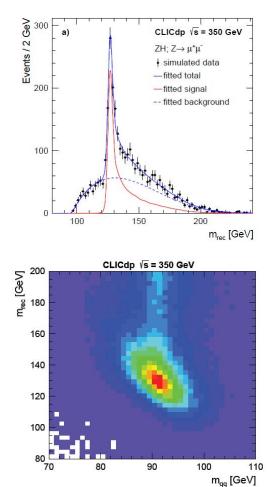
$ee \rightarrow HZ$: energy optimization


ZH with Z⁰ reconstruction

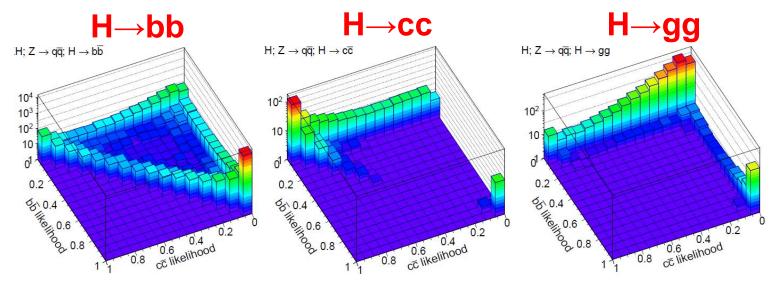
M_H from recoil mass

σ(M_H)=110 MeV

Invisible Higgs decays



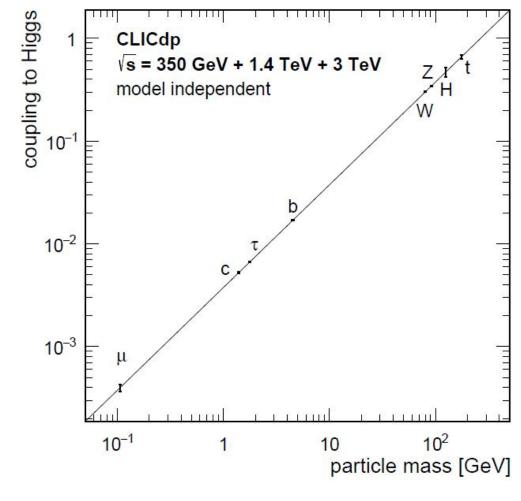
BR(H→invis)<0.97% (90%CL) [SM: 0.1%]


Model-independent measurement of HZZ coupling

- Higgs is "tagged" rather than reconstructed
- Selection efficiency nearly independent from the Higgs decay mode
- Combining $Z \rightarrow \ell \ell$ and $Z \rightarrow qq$: $\frac{\Delta \sigma(ZH)}{\sigma(ZH)} = 1.65\%$ $\frac{\Delta g_{HZZ}}{g_{HZZ}} = 0.8\%$

Higgs hadronic branchings

- Hadronic decay preselection
 - $ZH \rightarrow 4jets$
 - (ZH, Hvv) \rightarrow 2jets + missing p_T
- bb/cc/gg jets are separated using the MVA technique based on flavour tagging
 LCWS2017 I.Boyko

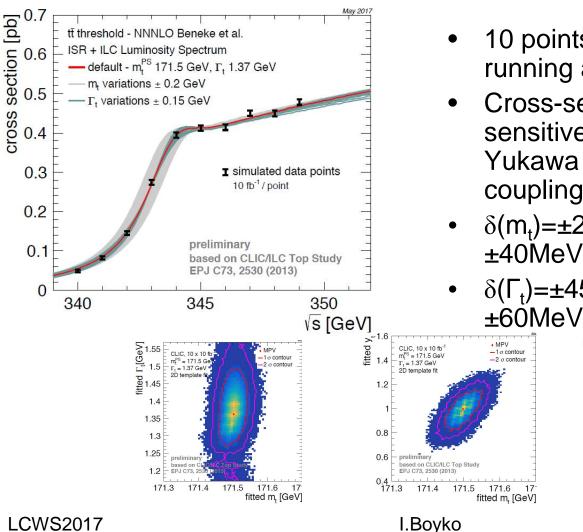

Decor	Statistical un	ncertainty
Decay	Higgsstrahlung	WW-fusion
$H \to b \overline{b}$	0.86 %	1.9%
$H \to c \overline{c}$	14 %	26 %
$H \to gg$	6.1 %	10%

Model-independent fit to Higgs couplings

•	• /	$\frac{\mathbf{H} \to \mathbf{b}\overline{\mathbf{b}})}{(\mathbf{H} \to \mathbf{b}\overline{\mathbf{b}})} \propto$ $\to \mathbf{W}\mathbf{W}^*) \propto$		coupling relative to SM	.2 -		Cdp del in	depe	nden	t			350 (+ 1.4 + 3 T	TeV		
Parameter	Ro 350 GeV	elative precision + 1.4 TeV	on + 3 TeV	ing rel	-										T	
	$500\mathrm{fb}^{-1}$	$+1.5 \text{ab}^{-1}$	$+2 ab^{-1}$	Idn	59	6	-								:: :::::::::::::::::::::::::::::::::::	
8HZZ	0.8%	0.8 %	0.8%	8	19	II		. I.	I	Π			Ì.	T		
8 _{HWW}	1.4 %	0.9 %	0.9%		1	ç e	de de	i de de	-		₩	₩	¦ <u></u> li 	- - ¢∳ - (•	ŧ
8Hbb	3.0%	1.0 %	0.9%					1-1-1	1		-1-2-2		1-1			ľ
8Hcc	6.2 %	2.3 %	1.9%		-		20000			11	200225		1		-	
8HTT	4.3 %	1.7 %	1.4 %					ς τ	b	t	W	Ζ	g	γ		
8 _{Hµµ}	5	14.1 %	7.8%			Γ _H	: 72	- ·	2	1		-	9	'	1	
8Htt	0.00	4.2 %	4.2 %				μ							Zγ	н	
g [†] _{Hgg}	3.7 %	1.8 %	1.4%				1							1	-	
$g^{\dagger}_{\rm H\gamma\gamma}$		5.7 %	3.2 %													
g [†] _{HZγ}	-	15.6%	9.1%	0).8 -											
Г _Н	6.7 %	3.7 %	3.5%		2										2	

LCWS2017

Higgs coupling precision


LCWS2017

I.Boyko

Top physics at 350-380 GeV

- Top mass (and width) from threshold scan
- Top mass from jet reconstruction
- Rare Top decays
- Precision electroweak couplings

Top threshold scan

10 points, 10fb⁻¹ each (1 year running at 350 GeV)

- Cross-section curve directly sensitive to the top mass, width, Yukawa coupling, strong coupling constant
- $\delta(m_t) = \pm 20 MeV(stat)$ ±40MeV(syst) ±40 MeV(scale)
- $\delta(\Gamma_t) = \pm 45 \text{MeV}(\text{stat})$ ±60MeV(scale)

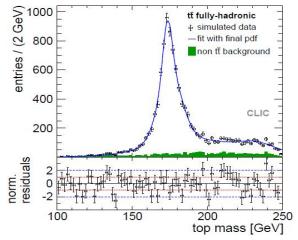
0.120

0.118

0.116

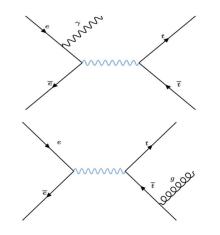
173.95

174.00


0.11791

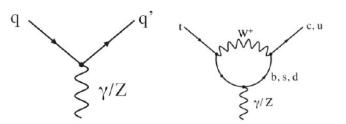
174.05

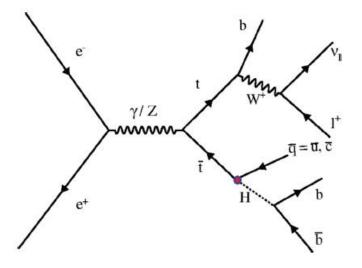
top mass [GeV]


Top mass above threshold

Invariant mass reconstruction

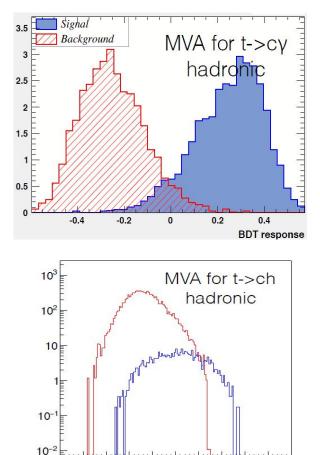
- Systematics-dominated measurement
- Experimental systematic error on m_t about ±80 MeV, dominated by Jet Energy Scale
- Similar statistical error reached already with 100 fb⁻¹
- Additional theoretical errors from scale and colour reconnection uncertainties


Radiative events



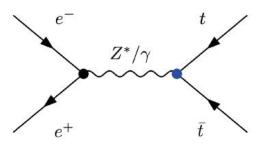
- Idea: measure differential crosssection of ISR (extra photon) or FSR (extra jet)
- Work in progress
- Very preliminary estimate: expect m_t precision of the order of ±100 MeV

Rare top decays

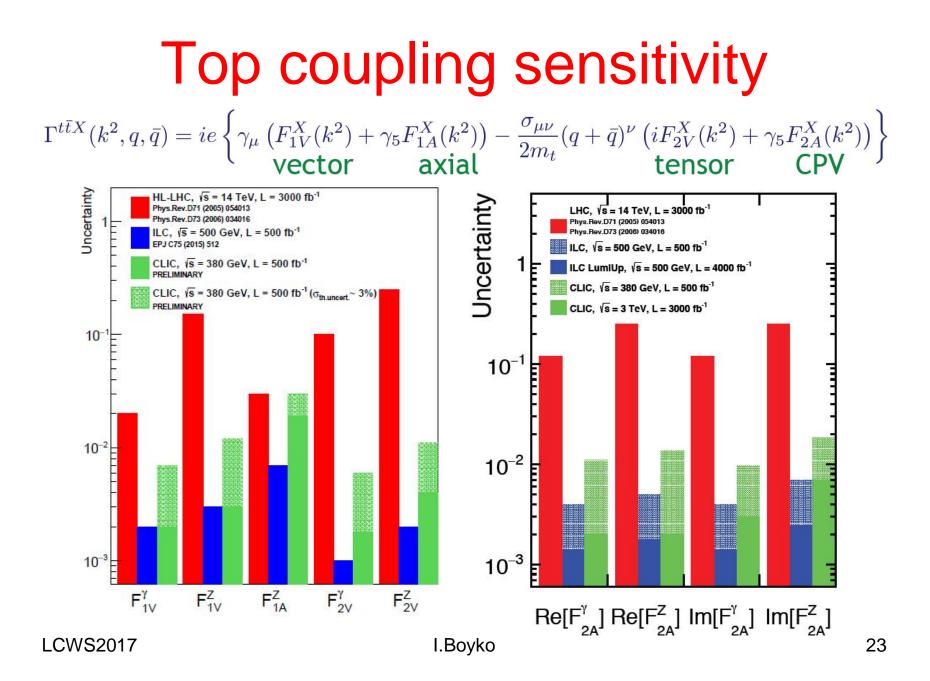

- The FCNC decays t→cγ/cZ/cg/cH have negligible branchings in the Standard Model (10⁻¹²-10⁻¹⁴)
- Currently 2 channels are under study: t→cγ and t→cH
- Signal: for ee→tt one top decays anomalously, another decay is standard, t→Wb

Rare top decays very preliminary results

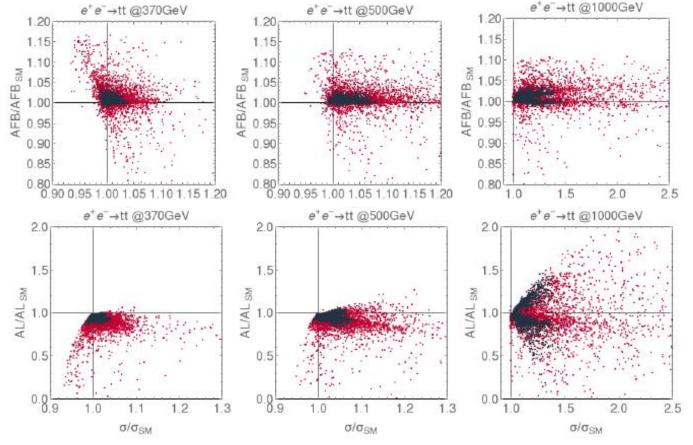
- t→Cγ
 - − CLIC sensitivity: BR(t→cγ)<0.5-10⁻⁴ (95%CL)
 - Expected HL-LHC: 2-10⁻⁴
- t→cH
 - CLIC sensitivity: BR(t→cH)<1.6-10⁻⁴ (95%CL)
 - Expected HL-LHC: 2-10⁻⁴


-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.

MVA respons


Top electroweak couplings

 $\Gamma^{t\bar{t}X}(k^2,q,\bar{q}) = ie \left\{ \gamma_{\mu} \begin{pmatrix} F_{1V}^X(k^2) + \gamma_5 F_{1A}^X(k^2) \end{pmatrix} - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu} \begin{pmatrix} iF_{2V}^X(k^2) + \gamma_5 F_{2A}^X(k^2) \end{pmatrix} \right\}$ $\begin{array}{c} \text{vector} \quad \text{axial} \quad \text{tensor} \quad \text{CPV} \end{pmatrix}$


- Observables to distinguish Z and γ couplings:
 - Energy dependence of the cross-section
 - Forward-backward charge asymmetry
 - Beam polarization asymmetry $(P_e^- = \pm 80\%)$
 - Top quark polarization
 - Spin correlation
- Deviations from SM can be parameterized in terms of New Physics, e.g. in the EFT language

$$\begin{split} F_{1,V}^{Z} - F_{1,V}^{Z,SM} &= \frac{1}{2} \left(\underline{C}_{\varphi Q}^{(3)} - \underline{C}_{\varphi Q}^{(1)} - \underline{C}_{\varphi t} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underline{C}_{\varphi q}^{V} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \overset{\varepsilon}{=} \\ F_{1,A}^{Z} - F_{1,A}^{Z,SM} &= \frac{1}{2} \left(-\underline{C}_{\varphi Q}^{(3)} + \underline{C}_{\varphi Q}^{(1)} - \underline{C}_{\varphi t} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underline{C}_{\varphi q}^{A} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ F_{2,V}^{Z} &= \left(\underline{\operatorname{Re}\{C_{tW}\}c_{W}^{2} - \operatorname{Re}\{C_{tB}\}s_{W}^{2}} \right) \frac{4m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = \operatorname{Re}\{\underline{C}_{uZ}\}\frac{4m_{t}^{2}}{\Lambda^{2}} \\ F_{2,V}^{\gamma} &= \left(\underline{\operatorname{Re}\{C_{tW}\} + \operatorname{Re}\{C_{tB}\}} \right) \frac{4m_{t}^{2}}{\Lambda^{2}} = \operatorname{Re}\{\underline{C}_{uA}\}\frac{4m_{t}^{2}}{\Lambda^{2}} \\ \left[F_{2,A}^{Z}, F_{2,A}^{\gamma} \right] \propto \left[\operatorname{Im}\{C_{tW}\}, \operatorname{Im}\{C_{tB}\} \right] \end{split}$$

Top couplings: composite Higgs scenario

Points: 4DCHM scan with f=0.75-1.5 TeV, g_{ρ} =1.5-3

I.Boyko

Summary

- CLIC-380 will be the first step on the way to the ultimate energy frontier at 3 TeV
- However, this stage on its own will provide invaluable data for precision measurements
 - Model-independent, low-systematics measurements with ZH sample
 - Top mass with unprecedented precision from the threshold scan
 - Precision top-quark measurements with the huge sample of tt pairs
 - Although direct BSM discoveries require higher energy, the hints of New Physics may be observed as small deviations in precision measurements