Search for charged Higgs bosons in the CMS experiment

Mikko Lotti Helsinki Institute of Physics Particle Physics Days 20.10.2017

Two-Higgs-doublet models

- 2HDM predicts five physical scalar Higgs bosons:
 - Neutral, CP-even H and h
 - Neutral, CP-odd A
 - Two charged Higgs bosons H[±]
- Two VEVs: $\tan \beta = v_2 / v_1$

Production depends on the mass

Light: **m_H[±] < m_t - m_b**

Heavy: $m_H^{\pm} > m_t - m_b$

Decay mechanism

 $\tan \beta = 10$

 $\tan \beta = 50$

Run 2

Run 2

Signal

• We'll focus on charged Higgs boson decaying to a fully hadronic tau and a tau neutrino

Signal

• The tau and the neutrino can be used to calculate the transverse mass of the charged Higgs boson

Event selection

Event selection

Angular cuts

$$R_{\rm bb}^{\rm min} = \min \sqrt{(180^{\circ} - \Delta\phi(\tau, E_{\rm T}^{miss}))^2 + \Delta\phi(\text{jet}, E_{\rm T}^{miss})^2} > 40^{\circ}$$

 Cut to suppress QCD multijet background

Transverse mass distributions

Expected limits

Light

Heavy

Trigger efficiency fitting

- One of the dominant sources of systematical uncertainties is the MET part of the trigger
- By fitting the efficiencies with a function we can reduce the systematical uncertainties

Outlook

- MVA methods
- Tau embedding
- Including the intermediate mass range