

Sergey Suvorov

09.10.17

5th Workshop on Near Neutrino Detectors based on gas TPC, Tokai, Japan

Nue for ND280 upgrade

OUTLINE

- NuE simulation update
 - new analysis samples generated \rightarrow respin the efficiency analysis
- NuE topology selection
 - first look at the $CC0\pi/CC1\pi/CCO$ ther selection
- Iso-target electron selection
 - gain efficiency with selecting iso-target electrons

NUE SELECTION GENERAL PLAN

lepton from ν 1. Select Highest Momentum track with p > 200 MeV/c 2. Make sure it comes from Target/FGD 3. Track has long segment in TPC 4. Use TPC dE/dx info 5. Additional PID a) main track uses ECal → ECal segment is shower-like

- b) main track doesn't use ECal \rightarrow more strict dE/dx cut
- 6. Veto cuts
 - TPC/ECal upstream veto, pair veto

Separate topologies $CC0\pi$, $CC1\pi$, CCOther

if unsuccessful with TPC \rightarrow look for iso-target electrons

09.10.1

NUE SIMULATION UPDATE

- From the previous workshop:
 - All electron tracks with p > 100 MeV are stored
 - Nu spectrum bug fixed

Apply the NuE selection for the new files

• efficiency for the TPC NuE CC inclusive selection:

by Davide & Claudio

FWD/BWD TRACK SEPARATION

- Reconstruct the track direction:
 - by default all tracks are forward going
 - if 2 detectors successfully determine timing → can specify track direction
- What is "successfully determine timing":
 - have 2 detectors for timing determination with $(t_1, \sigma_1), (t_2, \sigma_2)$ compare $t_1 - t_2 vs N \sqrt{\sigma_1^2 + \sigma_2^2}$.
 - test N=0,2,3

FWD/BWD TRACK SEPARATION

600 ps	Target		FGD1		FGD2		Total		
no TarToF	Eff	Pur	Eff	Pur	Eff	Pur	Eff	Pur	2σ difference in timing is
0	53.2	65.1	50.3	69.8	44.6	60.9	43.2	65.2	enough for flipping the
2 sigma	54.3	66.7	51.5	71.5	49.2	71.7	45.0	69.3	false flipping
3 sigma	54.4	66.6	51.4	71.5	49.3	71.8	45.0	69.3	

2 sigma	Target		FG	Dl	FGD2		Total	
	Eff	Pur	Eff	Pur	Eff	Pur	Eff	Pur
600 ps	54.3	66.7	51.5	71.5	49.2	71.7	45.0	69.3
600 ps*	54.9	71.7	51.7	71.2	49.4	72.3	45.3	71.7
150 ps	54.4	66.6	51.4	71.6	49.3	71.9	45.0	69.3
150 ps*	54.8	71.7	51.7	70.9	49.4	72.3	45.3	71.6

No significant difference between time counters configurations

* additional ToF counters over target

NUE TOPOLOGY SELECTION

- With T2K-II proposed statistics (20×10²¹POT) can try to select NuE topologies
- Look for pions with:
 - TPC tracks:
 - long TPC track
 - PID based on the dE/dx
 - e^+/e^- besides main one are treated as π^0
 - Iso-target tracks:
 - track starts and ends inside target
 - use PID accuracy from target simulation studies
 - separation μ/π from e/p is 70% effective (8% contamination)
 - separation e from p is suggested 100% effective

NUE TOPOLOGY SELECTION

- Use NuE selection with TPC to separate topologies
- Purity is based on the NuE samples only at the moment

Purity	Target	FGD1	FGD2	Total
CC 0π	68.3	61.4	60.2	63.5
CC 1 <i>π</i>	62.1	67.5	65.5	64.8
CCOther	48.0	67.4	65.8	54.5

- First look:
 - Target is good for CC0π and not so good for CCOther → further tuning of iso-target pion selection needed
 - Overall purity is about 55-60%
- Next steps:
 - check the purity for NuE+NuMu samples
 - investigate the background
 - study the possibility of ECal usage

ISO TARGET NUE SELECTION

- With dE/dx = 10 MeV/cm half of 1 GeV electrons stops at 1m while the target is 2m long
- Low efficiency for target for FWD/BWD going tracks
- Simplified iso-target electron selection:
 - 1. No successfully selected TPC electron track
 - 2. Find all the iso-target tracks
 - 3. Look for long (L > 60 cm) track
 - 4. Identify as <u>not</u> a μ/π

Next steps:

- use detailed target PID based on true momentum/theta
- optimize track length cut

ISO TARGET NUE SELECTION

SUMMARY

- NuE simulation update fixed some bugs
 - analysis were rerun over the new files
- NuE topology selection
 - first look at the $CC0\pi/CC1\pi/CCO$ ther selection done
 - with the NuE samples
 - further plans:
 - check the purity for NuE+NuMu samples
 - investigate the background
 - study the possibility of ECal usage
- Iso-target electron selection
 - first simplified estimation of efficiency gain done
 - target efficiency reached the FGD one
 - further plans:
 - use detailed target PID based on true momentum/theta
 - optimize track length cut

BACK UP

Nue for ND280 upgrade

CONFIGURATIONS

New target, FGD, VTPC, HTPC, P0D, DsECal, ToF counters Schematics not on scale, only basket is represented

Nue for ND280 upgrade

TOF MEASUREMENT

Configuration:

- 6 ToF counters around the Target+HTPC box
- 2 possible additionnal ToF counters between Target and HTPC

Goals:

- Separate forward/backward tracks
- Separate protons/positrons
- Reject OOFV. Expect small effect for NuE selection

ELECTRON IN THE TARGET

- Loose $\frac{1}{2}$ forward going electrons \rightarrow need to check this
- dE/dx for our energies is $\approx 10 MeV/cm$
- For p ≈ 1GeV stop all electrons at 1 m → reduce efficiency for forward going electrons by factor of 2

Impossible to detect forward going electrons from the first part of the 2 m target

Will be interesting to study iso-target electron tracks as we expect quite large amount of such events

Electron tracks that exit target VS initial momentum: