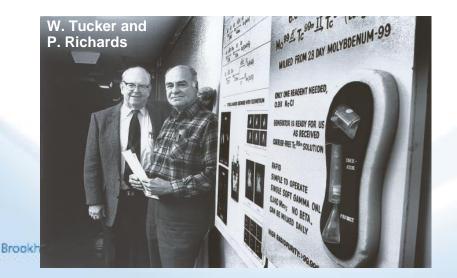
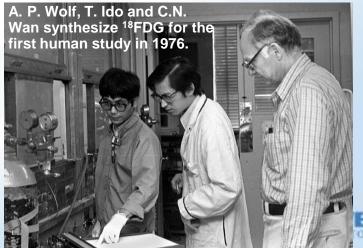
Production of Medical Radioisotopes for Medical Applications

Cathy Cutler July 3, 2018

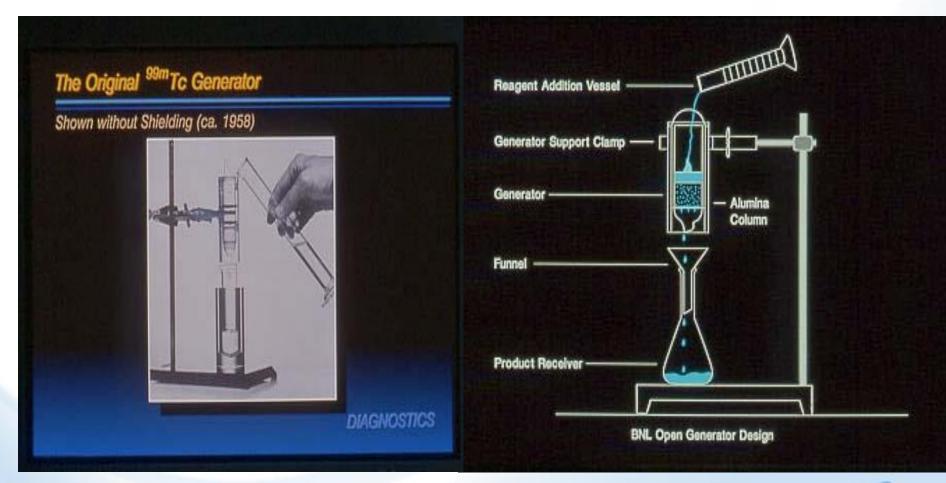
Contributors:

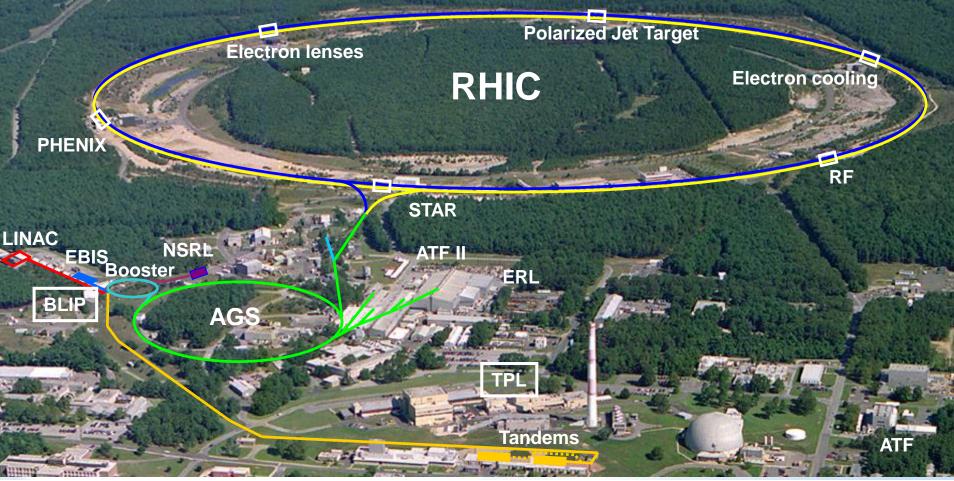
D. Medvedev, A. Degraffenreid, V. Sanders, S. Jurisson, L. Mausner, K. John


a passion for discovery

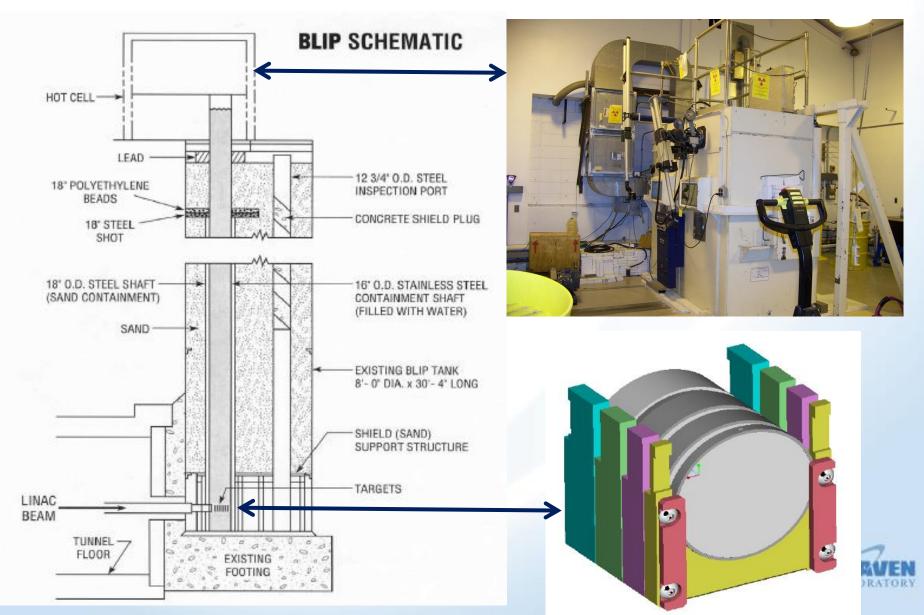


BNL is the Birthplace of Nuclear Medicine


- In the late 1950's, BNL scientists Walter Tucker and Powell Richards developed a generator system for producing Tc-99m and suggested its use for medical imaging. Tc-99m is now used in over 10 million patients/year in the U. S. alone.
- In the 1970's, scientists at BNL, U. Penn and NIH, combined chemistry, neuroscience and instrumentation to develop ¹⁸FDG (fluorodeoxyglucose), revolutionizing the study of the human brain.
- In 1980, BNL scientists first reported high FDG uptake in tumors, leading to FDG/PET for managing the cancer patient.
- Many radionuclide generator systems developed at BNL: ¹³²Te/¹³²I; ⁹⁰Sr/⁹⁰Y; ⁶⁸Ge/⁶⁸Ga; ⁵²Fe/^{52m}Mn; ⁸¹Rb/^{81m}Kr; ⁸²Sr/⁸²Rb; ¹²²Xe/¹²²I
- BNL pioneered the use of high energy proton beams for isotope production (BLIP)


ORY

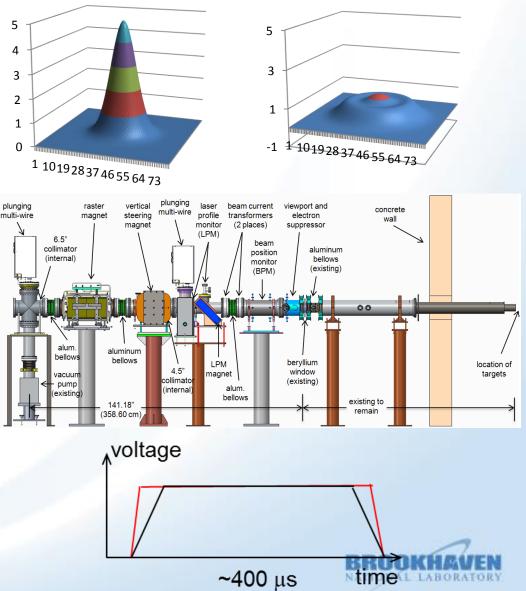
Brookhaven National Lab Open Generator Design: Column Chromatography



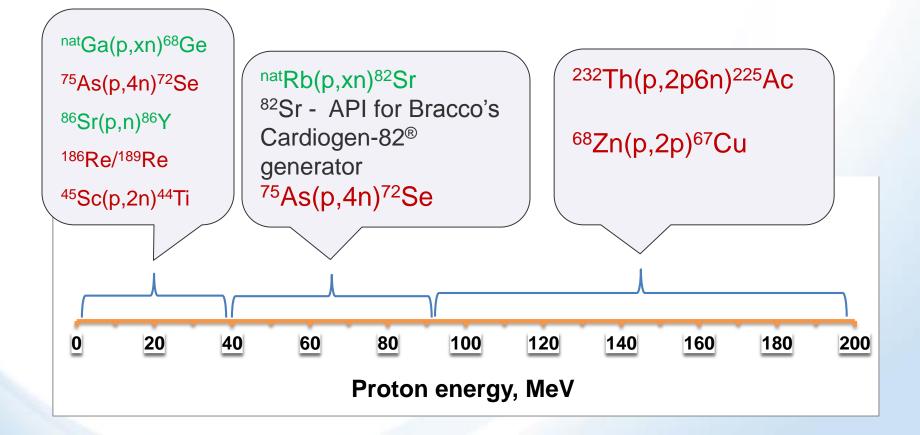
The RHIC Accelerator Complex

- Highly flexible and only US Hadron Collider exploring the QCD phase diagram and the spin of the proton
- Injectors also provide beams for unique applications: Isotope production (BLIP/TPL); Cosmic radiation simulation (NSRL); Commercial applications (Tandem)
- R&D for future facilities and accelerator applications (ERL, ATF/ATFII)

Brookhaven Linear Isotope Producer (BLIP)



BLIP Beam Enhancements


- BLIP beam raster system development
 - Reduction in localized target heating
 - Enables increase in beam current from 100 µA to 125 µA (greater isotope yields)
 - Greatly lowers possibility of target failures

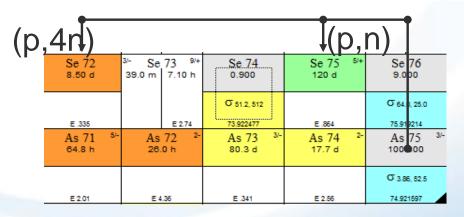
BNL linac intensity upgrade

- Phase 1 (in progress) Changes pulse shape to effectively increase current from 125 µA to 140 µA
- Phase 2
- Increases current to 250 μA by increasing pulse length

Opportunities for isotope production and R&D at BLIP

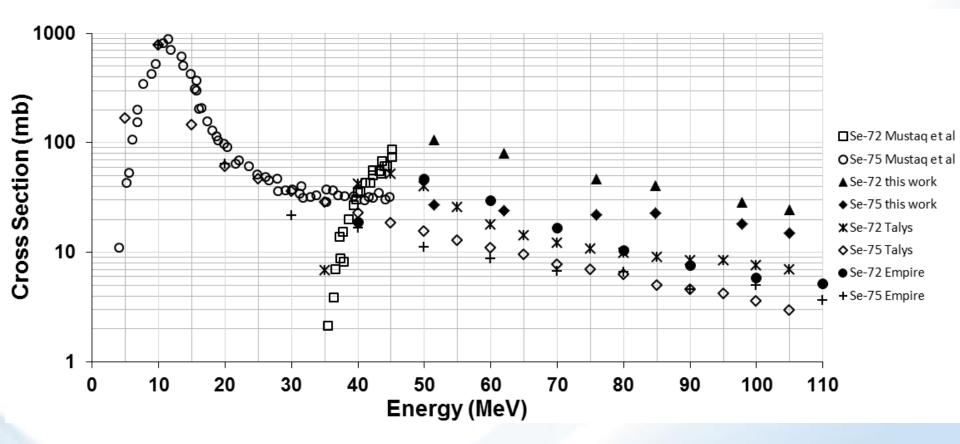
Theranostics

- Aim to treat the right patient with the right drug at the right time at the right dose.
- Proposed process of diagnostic therapy for individual patients to test the for possible reaction to taking new medications and to tailor a treatment plan for them based on the test results
- Therapeutic product followed by diagnostic
 - eg: a drug that shows efficacy, but not for all; new diagnostics used to identify the patients for whom it will work
- Diagnostic product followed by therapeutic
 - Diagnostic that distinguishes patients or disease type and allows selection of therapy.

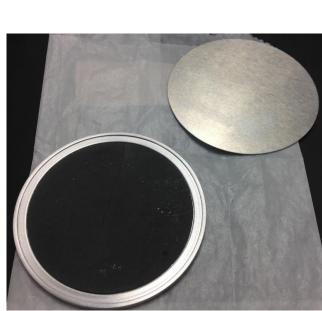

High Specific Activity ⁷²As – theranostic pair to ⁷⁷As

Imaging Isotope ⁷²As (T_{1/2}= 26 h)

Positron energy comparison


Isotope	⁸⁹ Zr (3.27 d)	⁶⁸ Ga (67.7 m)	¹²⁴ I (4.18 d)	⁷² As (26 h)
Mean E_{β}^{+} , keV	396 (22.7%)	829.5 (88.9%)	870 (22.7%)	1170 (87.8%)

- No-carrier added ⁷²As can be obtained from ⁷²Se/⁷²As generator
- Accelerator production of ⁷²Se from ^{nat}RbBr(p,x) at high energy and ⁷⁵As(p,4n) at intermediate energy has been reported
- We are interested in ⁷⁵As(p,4n) production route for which excitation functions up to 45 MeV have been reported


Excitation functions for ⁷⁵Se and ⁷²Se production from As

Large scale production of ⁷²Se at 105-103.5 MeV

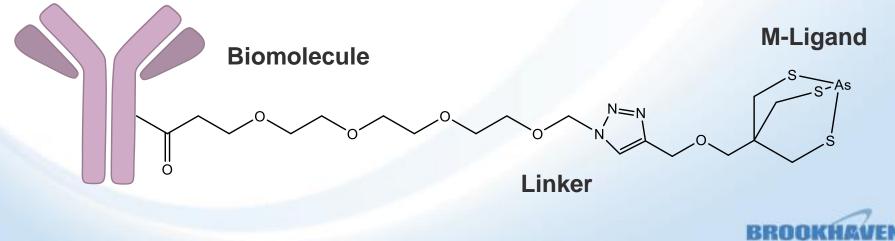
BNL ID	Design	Target Material	Time Period	Beam time, d	Beam Current, μΑ	Activity Produced (mCi)
BXA	Welded Al	GaAs	6/8/16 to 6/13/16	4.85	136.4, rastered	101.6
BXI	Welded Al	As	7/29/16 to 8/1/16	2.87	163.2, rastered	373.4

Irradiation parameters:

- Target size: d × h=2.375 × 0.020 inches
- Synergistic with RbCl targets, positioned upstream
- E on target = 105 MeV
- Theoretical yield 9.9 mCi/µA based on cross section data

⁷²Se/⁷²As Generator

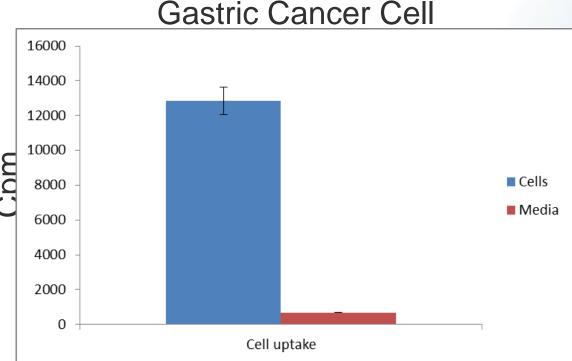
- Anion exchange
- AG1-X8 (200-400 mesh)
 - 5 mL BV
- Load in 0.3 M NH₄OH
- Rinse H₂O
- Rinse dilute HCI
- Collect each fraction to determine percent loaded



⁷²As-Monoclonal Antibodies

- Trastuzumab (Herceptin)
 - 2mg/mL/rxn
- Daratumumab
 - 1mg/mL/rxn
 - control

- Test against patient specific tumor models
- To visually observe
 - Drug sensitivity
 - Uptake
 - Effectiveness



Brookhaven Science Associates

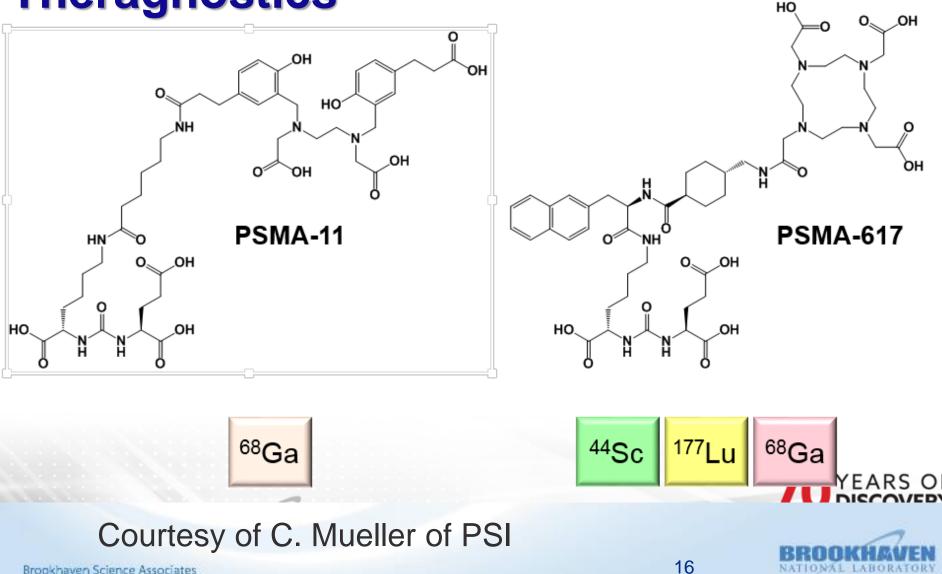
⁷²As-mAb Cell Studies

- ⁷²As-trastuzumab is incubated with gastric cancer cell lines for a 24 hour period
- Cells are separated from the media and analyzed for radioactivity

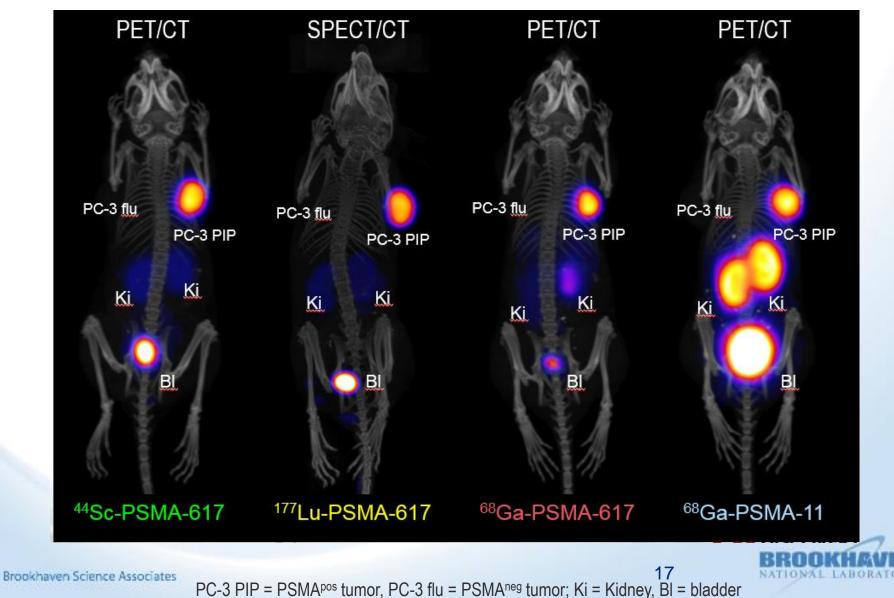
Completed at Stony Brook University

18.5 times uptake in cells!!!

Production at < 30 MeV: ⁴⁴Ti (59.1y) parent of ⁴⁴Sc (3.97 h)


- Scandium-44
 - Decays by electron capture to Ca-44 (stable), mean $E_{\beta+}=632$ keV, E $\gamma=1157.02$ keV (99.9%)
 - Metallic isotope that offers intermediate half-life of 3.97 h (Ga-68 – 67.7 min, Zr-89 – 78.41 h)
 - Offers theranostics opportunities
 - Pretherapeutic dosimetry evaluation for M³⁺radiopharmaceuticals
 - Excellent compatibility with biological half-life of peptides
 - Diagnostic pair for therapeutic Sc-47
- Can be supplied on a generator^{*} ⁴⁴Ti(59.1 years)→ ⁴⁴Sc(3.97 h)
- ⁴⁴Ti production requires long irradiations: dedicated irradiations are not economically viable

			45S	c(p,2n) ⁴⁴ Ti	
Ti 41 ^{3/+} 88.0 ms	Ti 42 202 ms	Ti 43 ^{7/-} 490 ms	Ti 44 47.3 a	Ti 45 ^{7/-} 3.08 h	Ti 46 8.000
E 12.93	E 7.00	E 6.87	E .268	E 2.06	♂ 600mb, 400mb
Sc 40 4-	Sc 41 7/-	Sc 42	Sc 43 7/-		Sc 45 7/-
182 ms	600 ms	61.0 s 683 ms	3.89 h	58.6 h 3.93 h	100,000
					σ 17.0, 7.00
E 14.32	E 6.50	E 6.43	E 2.22	E 3.65	44.955910



*Filosofov et al, Rad. Acta. 2010, 98(3), 149-156

PSMA Targeting: The Principle of Theragnostics

Images Obtained with PSMA Ligands

Theranostics 2017, Vol. 7, Issue 18

2017; 7(18): 4359-4369. doi: 10.7150/thno.20586

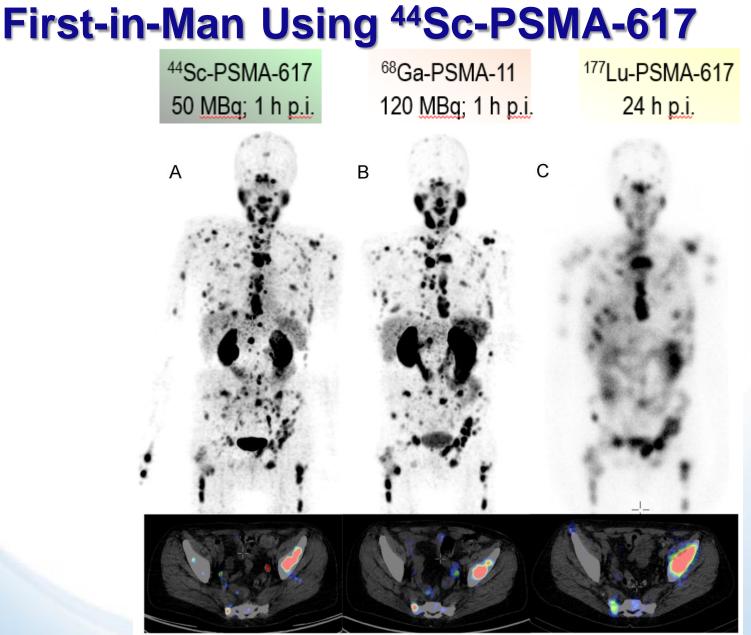
Research Paper

Clinical Translation and First In-Human Use of [⁴⁴Sc]Sc-PSMA-617 for PET Imaging of Metastasized Castrate-Resistant Prostate Cancer

Elisabeth Eppard¹*^{\subset}, Ana de la Fuente²*, Martina Benešová³, Ambreen Khawar¹, Ralph A. Bundschuh¹, Florian C. Gärtner¹, Barbara Kreppel¹, Klaus Kopka³, Markus Essler¹, Frank Rösch²

1. Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany;

2. Institute of Nuclear Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany;


3. Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.

* These authors contributed equally

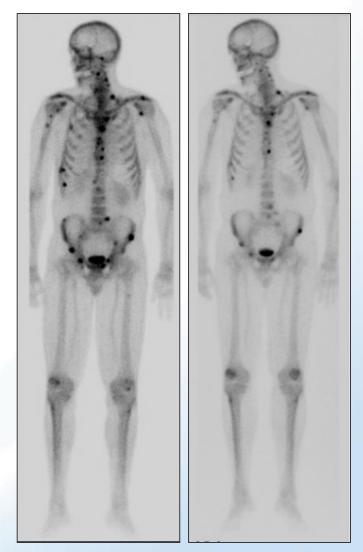
🖂 Corresponding author: Elisabeth Eppard, Sigmund-Freud-Strasse 25, 53127 Bonn Tel.: +49-228-287-16897 Fax.: +49-228-287-16615 Email: Elisabeth.eppard@ukbonn.de

4359

Alpha Therapy in Practice: ²²³Ra

Xofigo (radium-223 dichloride, Bayer)- First FDA Approved Alpha Therapy Agent in 2013

Ra-223 (t_{1/2} = 11.43 d; multiple α particles between 5-6 MeV)

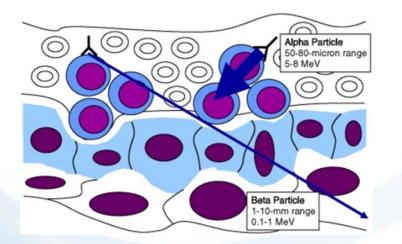

Used to treat bone metastases in end-stage prostate cancer

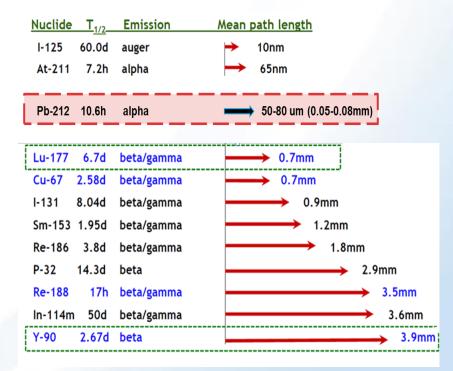
-Radium is preferentially absorbed by bone by virtue of its chemical similarity to calcium

-Naturally targets new bone growth in and around bone metastases

Therapeutic effect is largely palliative, it is not targeted

Paves the way for other alpha therapy agents!


Physicochemical characteristics of β-emitters and α-emitters

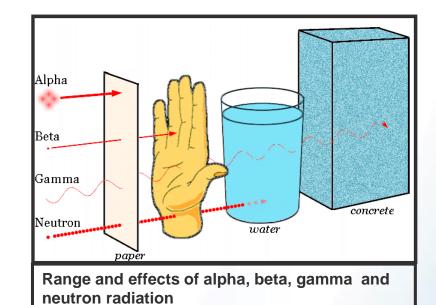

β -emitters

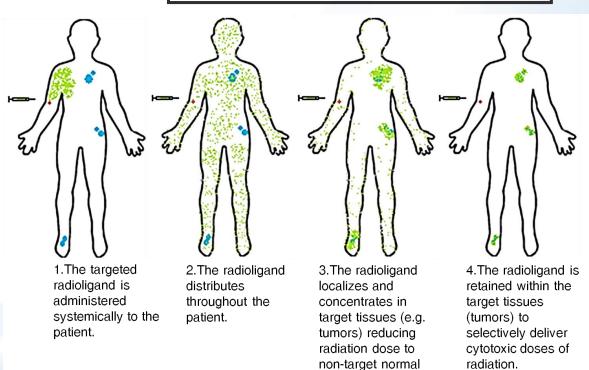
- Intermediate LET radiation (0.50-2.30 MeV) ; long range in tissues (1-12 mm of tissue penetration).
- B-particles range: target clusters of cells (from 10 to 1,000 cells)

α-emitters

- High-LET radiation (60-230 keV/µm)
- Short to intermediate path length ($^{212}\mbox{Pb: 50-80}\ \mu\mbox{m})$ in tissues
- Path length: target several cells (2-10 cells)
- High LET causes Irreversible damage of double stranded DNA

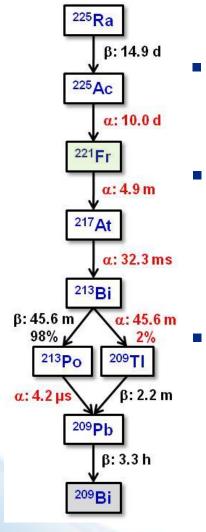
Slide courtesy of Dr. M. McDevitt, Memorial Sloan Kettering Brookhaven Science Associates




Targeted Alpha Therapy in Theory

"High-linear-energy αparticle emissions create dense ionization paths in tissue that render high target-to-nontarget dose ratios that are highly effective at cell killing"

George Sgouros, SNNMI-MIRD, 2015


The properties of αemitting isotopes make them well suited for treatment of cancer

tissues.

Accelerator-Produced ²²⁵Ac for Targeted Therapy

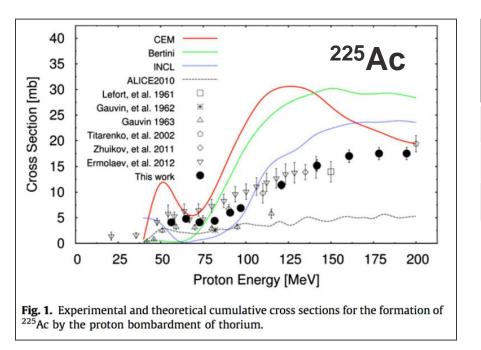
- Clinical data suggests both α -emitting Ac-225 (t_{1/2} 10 d) and its daughter, Bi-213 (t_{1/2} 45.6 min) will be powerful isotopes for targeted alpha therapy for cancer
- Current world-wide, annual supply is 1.7 Ci/yr
 - 50+ Ci/yr required to support expanded clinical trials and drug development
 - Developing novel acceleratorproduction method to address demand
 - Working with clinical sites to evaluate material

ORNL Final Ac-225 Product

Relative Dose

		Dose (rem/mCi)	
Organ	131	²¹¹ At	²²⁵ Ac
Heart Wall	0.315	6.01	31.4
Kidneys	23.9	350	3250
Liver	0.645	9.99	53.2
Lungs	0.101	0.922	4.91
Spleen	0.54	3.31	17.8
Tumor	175	547	26900
Urinary Bladder			
Wall	0.265	0.00428	0.0243
Uterus	0.108	0.00453	0.0166
Total Body	0.361	2.31	31.7
en Science Associates Cour	tesy of Dav	vid Schlyer	BROOKHA

Brookhaven Science Associates


Courtesy of David Schlyer

Addressing the Supply Chain: Various ²²⁵Ac/²²⁹Th Production Routes

Facility	Nuclear Reaction
Reactor (thermal neutrons)	²²⁶ Ra(3n,γ) ²²⁹ Ra → ²²⁹ Ac→ ²²⁹ Th
Accelerator (electrons)	²²⁶ Ra(γ,n) ²²⁵ Ra→ ²²⁵ Ac
Accelerator (low energy particles)	²²⁶ Ra(p,2n) ²²⁵ Ac ²²⁶ Ra(α,n) ²²⁹ Th ²³² Th(p,x) ²²⁹ Th
Accelerator (high energy protons)	232Th(p,x) ²²⁵ Ac 232Th(p,x) ²²⁵ Ra→ ²²⁵ Ac

Accelerator Production of ²²⁵Ac – Initial R&D Promised Significant Impact

Anticipated Thick Target Yields	5 g/cm ² target yield for a 10 day irradiation
	Ac-225 (Ci)
IPF (250 µA)	1.4
BNL (100 µA)	2.0

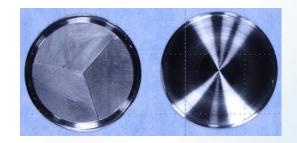
J.W. Weidner et al. Appl. Radiat. Isot. 70 (2012) 2590 J.W. Weidner et al. Appl. Radiat. Isot. 70 (2012) 2602 J.W. Engle et. al. Phys. Rev. C. 88 (2013) 014604 J.W. Engle et. al. Radiochim. Acta 102 (2014) 569

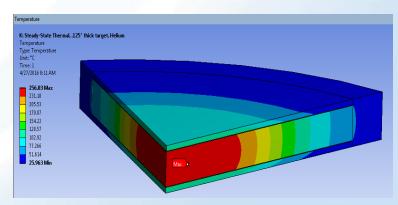
²²⁵Ac yield curve based on measured cross sections show that Ci-scale production is feasible at LANL and BNL

Basis of the Tri-Lab Effort: Leveraging Unique DOE Isotope Program Facilities, Capabilities and Expertise to Address ²²⁵Ac Supply

ORNL - Approximately 20 years of experience in the isolation of ²²⁵Ac from fissile ²³³U via ²²⁹Th

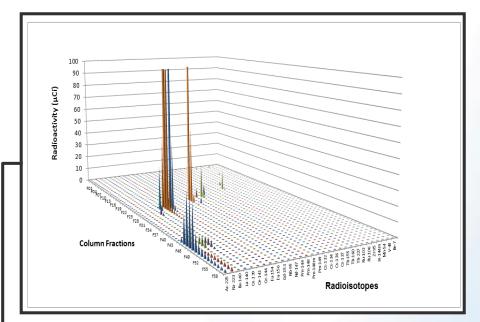
LANL Isotope Production Facility (IPF) at LANSCE; 100 MeV incident energy up to 250 µA for routine production


BNL Linac at the Brookhaven Linac Isotope Producer (BLIP) 160 μA intensity to targets at incident energies ranging from 66-202 MeV


NATIONAL LABORATORY

Target Challenge: develop thick Th targets to withstand high beam current to support clinical scale production

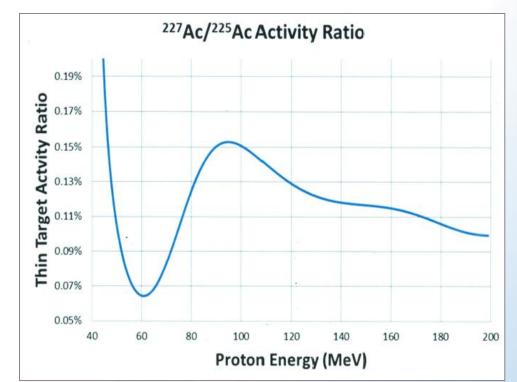
- Initial targets were thin Th foils (0.127mm, 0.9g) encapsulated in AI. Used to support small scale production for chemistry development and for ²²⁵Ac cross section determinations.
- Recent larger diameter (0.38mm thick,13g)BNL targets to support new rastered beam at BLIP were sealed in inconel by electron beam welding.
- Primary risk associated with Ci-Scale targets (~100g) is overheating. Capsule MP (1290° C) is lower than thorium MP (1755° C).
- Thermal behavior at Th/capsule interface is key.
- Thermal calculation for 165µA at 191 MeV incident energy assuming ideal thermal contact for a 3 mm thick target (105g) predicts low peak temperature but actual thermal contact conductance will be lower.



Technical Risks Unique to Accelerator Production: Process Chemistry

Accelerator production introduces complex chemistry challenges like separation of ²²⁵Ac from Th target mass, radiolanthanide byproducts and other nca radionuclides

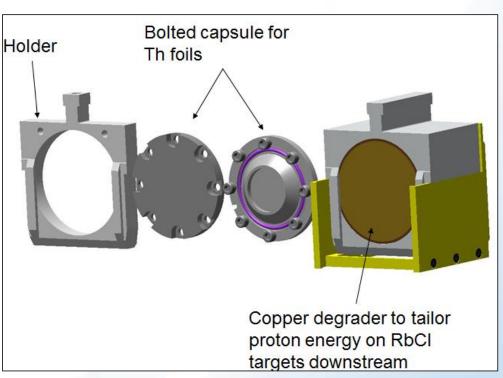
Exploring the application of HPIC to separate ²²⁵Ac from radiolanthanides


Developing conventional, in-hotcell process flow sheet using column chromatography approaches

Challenges Associated with Accelerator Produced ²²⁵Ac and Direct Application: The ²²⁷Ac Content

- Production of ²²⁵Ac also results in the co-production of ²²⁷Ac (t_{1/2} = 21.8 y). Ratio improves at higher proton energy, but degrades with longer irradiations.
- Concern regarding impact of ²²⁷Ac on dosimetry, toxicity and waste disposal

Instantaneous activity ratio of ²²⁷Ac to ²²⁵Ac for a thin Th target as a function of proton beam energy. Note that beam energy range captures current capabilities at BNL's BLIP and LANL's IPF facilities.

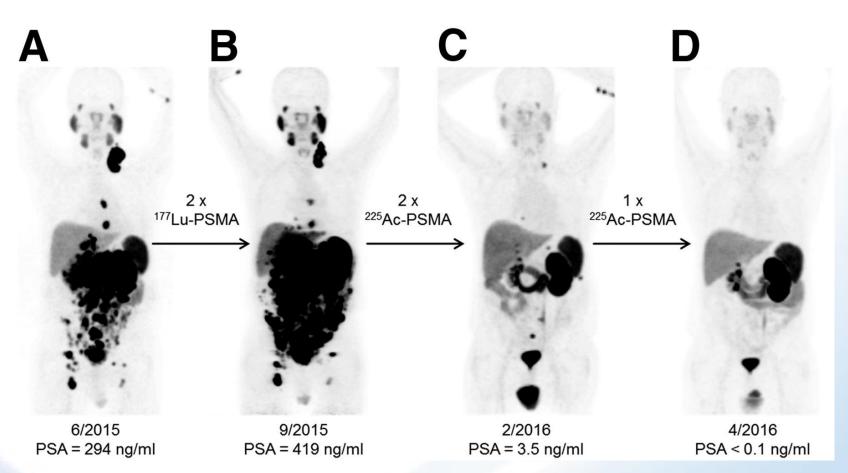

Quality of Product: "Proto-Production" for Materials Evaluation

22 thorium targets have been irradiated at LANL and BNL in support of initial target R&D, chemistry development and product evaluation.

Approximately 150 mCi of accelerator-produced Ac-225 has been isolated and distributed from ORNL for independent evaluation by end users.

²²⁵Ac/²¹³Bi generator performance is equivalent to generators derived from ²²⁹Th-derived ²²⁵Ac.

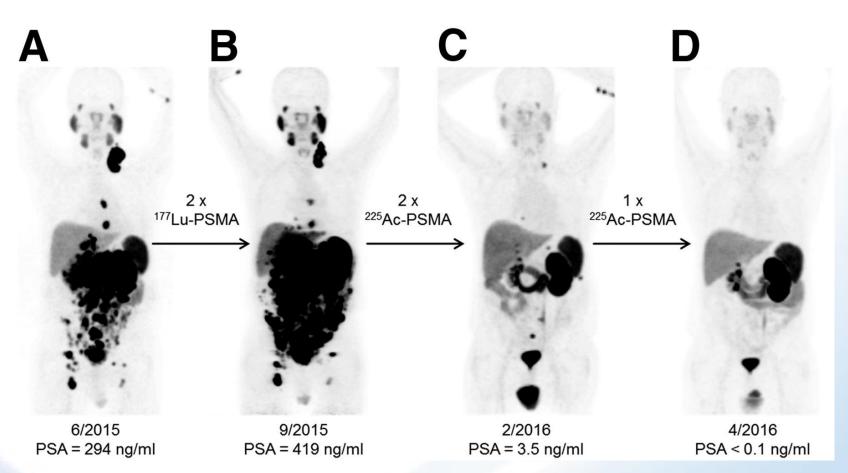
Preliminary direct labeling studies of the accelerator-derived ²²⁵Ac product are promising



Recent Target Developments: Rendering of front basket of 200 MeV Th target array at BLIP

13

Prostate Cancer Therapy



68Ga-PSMA-11 PET/CT scans of patient B. In comparison to initial tumor spread (A), restaging after 2 cycles of β-emitting 177Lu-PSMA-617 presented progression (B). Clemens Kratochwil et al. J Nucl Med 2016;57:1941-1944

Prostate Cancer Therapy

68Ga-PSMA-11 PET/CT scans of patient B. In comparison to initial tumor spread (A), restaging after 2 cycles of β-emitting 177Lu-PSMA-617 presented progression (B). Clemens Kratochwil et al. J Nucl Med 2016;57:1941-1944

Summary

- BLIP routinely receives proton beam from LINAC at 117 MeV and average current 165 µA
- A total of 160 mm of target space is available both for research and production
- Beam is rastered for production targets; can be focused for cross section measurements and enriched targets' irradiations
- Additional production capability exists upstream and downstream of RbCI targets and used for production of ⁷²Se, ⁴⁴Ti, ²²⁵Ac and other radionuclides.
- Targetry has been developed allowing for long irradiations, further chemistry has been developed to allow for processing.

MIRP Group

Questions