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The Large The Large 
Hadron ColliderHadron Collider

LHC ring:
27 km circumference
~100 m underground

CERN main site
Lake Geneva Airport

 → Mike Lamont’s talk on Tuesday
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1232 superconducting main dipoles
Two-in-one coil design

Maximum B field 8.4 T (E
beam

=7 TeV)

Cooled to 1.9K with 90 tonnes of LHe

Each beam: 2800 
bunches each 
holding 1011 

protons
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The ATLAS and CMS detectorsThe ATLAS and CMS detectors
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~100 M channels, with timing capable of separating particles from adjacent 
proton-proton bunch-crossings (25ns spacing)

7000 t, 45m long x 25m diameter
Silicon+gas (transition radiation) tracker, 2T solenoid, 

LAr + scintillator tile sampling calorimetry, large air-core 
toroid muon spectrometer, peak field ~4 T

ATLAS detectorATLAS detector
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Construction was a ten-year enterprise with also several years of R&D – 
component production in the member institutions and in industry

7000 t, 45m long x 25m diameter
Silicon+gas (transition radiation) tracker, 2T solenoid, 

LAr + scintillator tile sampling calorimetry, large air-core 
toroid muon spectrometer, peak field ~4 T

ATLAS detectorATLAS detector
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14000t, 29m long x 15m diameter
13m long 6m-bore solenoid, B = 3.8T

CMS detectorCMS detector
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Detector upgradesDetector upgrades
The LHC experiments have staged 
upgrade programmes

ATLAS and CMS will take data for 
about 20 more years

Illustrated here: CMS replacement 
pixel detector installed in 2017

OLDOLD

NEW
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Multiple layers: measure charged particle momenta (tracks), EM and hadronic energies 
(calorimetry), and provide particle identification from different signatures
Full event: transverse momentum balance  sensitive to invisible particles (ν, …→ ?)

Detector principlesDetector principles



D Charlton / Birmingham – ACP 2018 12

ATLAS: 220 member institutes across 38 countries
~3000 scientific authors, including ~1000 students

Global Global 
CollaborationsCollaborations

* ASRT, Egypt, 
is a member 

of CMS

*
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Global Global 
CollaborationsCollaborations

Snapshot in 2014
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Breadth of LHC physicsBreadth of LHC physics

While it is best known for the 
Higgs boson, there is a huge 
range of physics studied at the 
LHC

LHC

109/s

10/s – 
10/hour 
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Breadth of LHC physicsBreadth of LHC physics

While it is best known for the 
Higgs boson, there is a huge 
range of physics studied at the 
LHC

● Higgs boson properties and 
physics

● Othe fundamental SM 
parameters – masses, couplings

● Electroweak gauge bosons
● Top quarks
● b quarks
● Measuring the CKM quark 

mixing matrix, and CP violation
● Strong interaction, QCD, at the 

high and low energies
● Study of hot dense hadronic 

matter (heavy ion collisions)
● Huge range of searches for 

physics beyond the Standard 
Model

LHC

109/s

10/s – 
10/hour 

This talk

 → Jory Sonneveld’s talk, next

 → Zihnle 
Buthelezi’s talk 
tomorrow

This talk
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LHC pp data samplesLHC pp data samples

pp centre-of-mass energy √s

  2015-2018 √s = 13 TeV
  2011,12 √s = 7,8 TeV

Expect √s=14 TeV from 2021
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A high-mass dijet event, m(jj)=9.3 TeVA high-mass dijet event, m(jj)=9.3 TeV
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Detector performance examplesDetector performance examples

After calibration
2016 data

Z e→ +e−

To compare theoretical predictions with real 
data, we must map from the primary particles 
we study through the response of the detector, 
using Monte Carlo (MC) simulations

● Event generators → partons to particles
● Detector simulation with GEANT4

Excellent modelling of 
electron response after 
calorimeter calibration

Hadronic jet 
energy scale

Modelling of response of 
detector to hadronic jets 

– not precisely 1, but 
measured using data, and 

corrected to ~1% level
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Cross-sections – 15 orders of magnitudeCross-sections – 15 orders of magnitude
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Measurements of W and Z bosonsMeasurements of W and Z bosons

p

p q

q΄ W ℓ

ν

Clean experimental signatures and large 
cross-sections

● High precision measurements
● Strong constraints on proton structure
● Tests of consistency of electroweak 

(EW) sector of SM

Example: measurement of angular 
distributions of leptons relative to beam 
direction in W→ℓν decays

Green errors are from the data – errors on 
predictions from different proton 
structure (pdf) sets much larger
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WW→μν event→μν event
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Measuring the W massMeasuring the W mass

arXiv:1806.00242

W mass first measured directly back in the 1980’s
● History of precision (Particle Data Group)
● Single ATLAS measurement so far from LHC

EPJC78 (2018) 110
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Precision electroweak fitsPrecision electroweak fits

Within the SM framework, EW observables 
can be predicted using just five parameters 

● Many more than five observables have 
been measured

● Requires theoretical predictions at as 
high a level as possible (must include 
loop diagrams!)

● We can fit all EW measurements for a 
global EW precision test
Latest Gfitter fit: χ2=18.6 for 15 d-of-f

● We can re-interpret the other results 
into a prediction of mW and mtop 

● We can try to predict the Higgs boson 
mass using all the other measurements

W
H

WW W W
t

b

cern.ch/gfitter
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Precision electroweak physicsPrecision electroweak physics
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Precision EW fits: "predicting" mPrecision EW fits: "predicting" m
HH
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Beyond the discovery of the Higgs bosonBeyond the discovery of the Higgs boson
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Beyond the discovery of the Higgs bosonBeyond the discovery of the Higgs boson
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Higgs boson interactions in the SMHiggs boson interactions in the SM
In the Standard Model, the couplings of the Higgs boson to the other SM particles is 
fully prescribed: But is it right?

H

W−

W+

H
Z0

Z0 H

H
H

H

H

H

H

H

H

f

f
H

Interactions with electroweak gauge bosons

Interactions with fermions – the Yukawa 
interactions – there are twelve coupling strengths 
(six quarks, six leptons [? neutrinos])

Self-interactions 
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Higgs boson interactions in the SMHiggs boson interactions in the SM
In the Standard Model, the couplings of the Higgs boson to the other SM particles is 
fully prescribed: But is it right?
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H

Interactions with electroweak gauge bosons

Interactions with fermions – the Yukawa 
interactions – there are twelve coupling strengths 
(six quarks, six leptons [? neutrinos])

Self-interactions 

Seen directly as part of H discovery

Seen directly as part of H discovery

For the future – HL-LHC?

For the future – HL-LHC?

Now starting to measure these directly

Now starting to measure these directly
For the future – but how?

For the future – but how?
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Higgs boson productionHiggs boson production
Multiple production mechanisms with different event characteristics

Main (single H) 
production diagrams

“ggF” dominates, but multiple 
processes should be detectable

H production via ggF, VBF and VH 
processes were established from earlier 

data

“ggF”
ggF

“VBF”

VBF

“ttH”
ttH

“VH”
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Three very massive particles: tThree very massive particles: tttHH
New results in the last few weeks: 
5σ observation of ttH from CMS and ATLAS

Very sophisticated analyses, pushing detector 
performance very far, many channels, multivariate 
analyses...

CMS ttH 
candidate 

event
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ttttH observationH observation

CMS: 5.2σ (4.2σ exp)

PRL 120 (2018) 231801

New results in the last few weeks: 
5σ observation of ttH from CMS and ATLAS

Very sophisticated analyses, pushing detector 
performance very far, many channels, multivariate 
analyses...

ATLAS: 6.3σ (5.1σ exp)

arXiv:1806.00425

“How signal-like is the event”

https://arxiv.org/abs/1806.00425
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Higgs boson decaysHiggs boson decays

0.2% H  → γγ

Predicted decay modes

The Standard Model predicts the H decay branching ratios to known particles
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Higgs boson decaysHiggs boson decays

0.2% H  → γγ

Predicted decay modes

Discovery channels

Low branching fractions
BF(H ZZ* 4(e/→ → µ)) ~ 0.01%

BF(H→γγ) ~ 0.2%

The Standard Model predicts the H decay branching ratios to known particles
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H decays to bosons – precision eraH decays to bosons – precision era

Run-2 analyses including data from 2017 (with 80 fb-1) were reported this 
month, for the first time – higher precision is coming!

ATLAS-CONF-2018-018

CMS-PAS-HIG-18-001
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H decays to fermions: H decays to fermions: ττ++ττ−−

Dominant decays of the H to 
fermions are expected to be to bb, 
ττ (and cc)

Experimentally ττ most significant – 
both CMS and ATLAS have 5σ 
significances (Run-1+Run-2)

● CMS 5.9σ (5.9σ)
● ATLAS 6.4σ (5.4σ) new

“How signal-like is the event”



D Charlton / Birmingham – ACP 2018 37

H decays to fermions: bH decays to fermions: bbb
Results with 2016 data mainly released last year

● Difficult analyses with many tough points
Run-1+Run-2 signal strengths:

New this month: ATLAS update on H→bb from 
vector-boson fusion in 13 TeV data

Both correspond to evidence at 3.6-3.8σ

PLB 780 (2018) 501

CERN-EP-2018-140
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SummarySummary

The LHC is delivering larger and larger data samples, enabling a very wide 
range of studies

● ATLAS and CMS are exploring the Brout-Englert-Higgs mechanism by 
studying the Higgs boson in increasing depth

● In the last year: we established that the H interacts with fermions (τ 
leptons and t quarks) – Yukawa couplings do exist in nature!

● Latest step: observing ttH production at 5σ

● Many high-precision measurements match or exceed uncertainties on 
theory predictions, driving progress in higher-order calculations

● Only one percent of the full LHC data sample analysed! Twenty years 
of data ahead

The LHC is the world’s highest-energy particle physics 
collider - with global collaborations including institutes 

from all continents
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