

Self-Made Particle Detectors for High Schools and Universities

Andreas Düdder, Matthias Schott (JGU Mainz) Günter Quast, Lars Vielsack (KIT)

ACP 2018

- Cloud chamber construction
- Kamiokanne A coffee pot Cherenkov detector
- Readout framework

Cloud Chamber

Working principle


- Radiation ionizes a gas in an oversaturated condition
- Ions act as condensation nuclei for a cloud formation
 - \rightarrow chemtrails of airplanes

Expansion Cloud Chamber

- Oversaturation reached by volume expansion
- No continuous operation

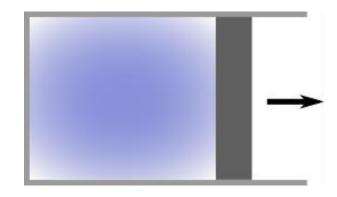
Diffusion Cloud Chamber

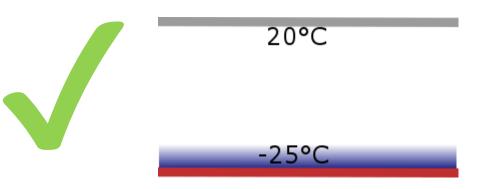
- Oversaturation reached by temperature gradient
- Long and stable operation

20°C

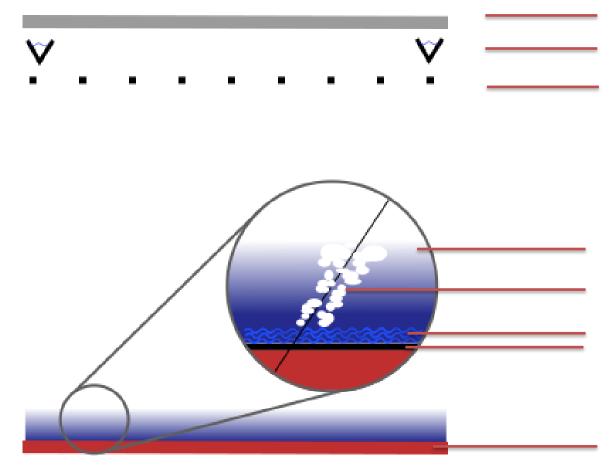
-25°C

Working principle

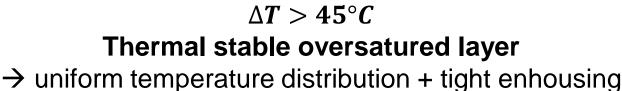

- Radiation ionizes a gas in an oversaturated condition
- Ions act as condensation nuclei for a cloud formation
 - \rightarrow chemtrails of airplanes


Expansion Cloud Chamber

- Oversaturation reached by volume expansion
- No continuous operation


Diffusion Cloud Chamber

- Oversaturation reached by temperature gradient
- Long and stable operation



Diffusion Cloud Chamber

- Top (glass) cover
- Isopropanol reservoir
- HV for ion collection (not necessary)
- Oversaturated layer
- Droplet trace formation
- Liquid layer
 - Black base plate for better contrast together with tangential light
 - Cooling unit

Cooling Technologies

Technology	Pro	Contra
Dry Ice Cooling	Quick to buildLittle material effort	 Dry ice not easily available Limited operation time
Peltier Cooling	 Long operation time Peltier easy to buy and safe to handle 	 Heat transfer from Peltier elements necessary
Refrigerating Compressor Cooling	 Long operation time 	 Compressor technology has to be bought as is

Cooling Technologies

Technology

Pro

Little material effort

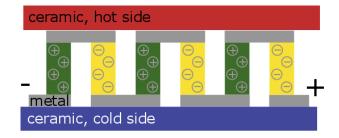
Quick to build

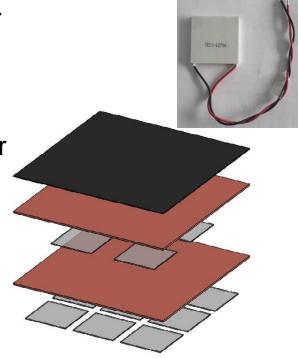
Contra

- Dry ice not easily available
- Limited operation time

Peltier Cooling

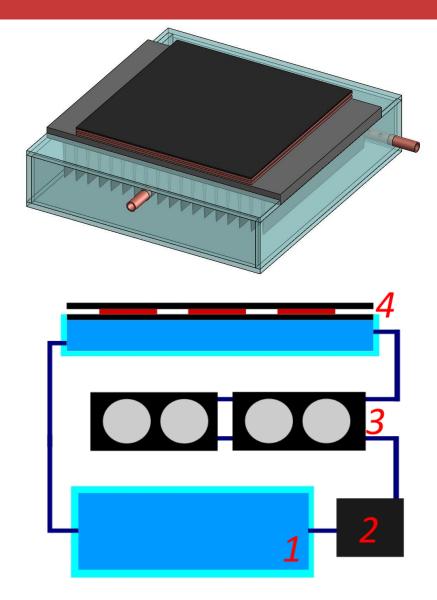
Dry Ice Cooling

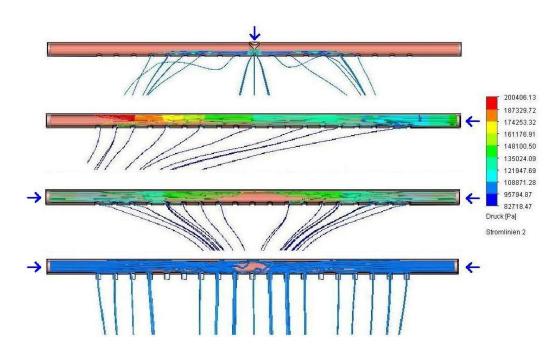

- Long operation time
- Peltier easy to buy and safe to handle
- Heat transfer from Peltier elements necessary

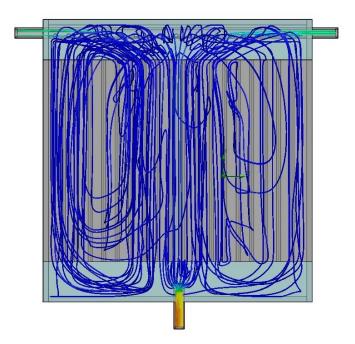

Refrigerating Compressor Cooling

- Long operation time
- Compressor technology has to be bought as is

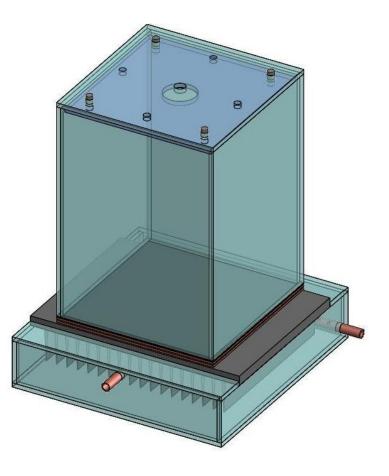
Peltier Characteristics


- Peltier under study (choosen by cost and easy purchase): TEC1-12706
- Size: 40 · 40 mm²
- Theoretical cooling capability: $\Delta T = 75 \text{ K}$
- Measured cooling capability: $\Delta T = 43$ K
- Limited by heat transport from the downside
- \rightarrow double layer of Peltier elements necessary for $\Delta T > 45 K$ for cloud chamber operation
- 12 V supply voltage for lower layer,
 5 V for upper layer
- Active area: $150 \cdot 150 \ mm^2$ with in total 13 Peltier
- Uniformity of the Peltier element: $\pm 3 K$
- 2 mm copper plates used to uniform temperature distribution
- Temperature coupling with generous spread thermal paste


Cooling unit


- Heat transport from the downside of the Peltier sandwich by water cooling
- Couple Peltire to heat sink with cooling rib in water basin
- Water either continuously flushed to sink or cooling circuit
- Circuit be implemented with standard computer cooling supply
- Pump (2) transports water from big reservoir (1) through radiators (3) to the water basin under the Peltier elements (4)
- III Stable gluing of the basin needed since water is under pressure III

Heat sink studies


- Some physics fun during construction: Simulation of the water flow in the basin under the Peltier elements
- Several studies like thermal calculations of the water cooling circuit or the air cooling of the power supplies, electrical power consumption or vapour formation make it more than a pure ,mechanical' tasks

Total layout

- Isopropanol reservoir in a vlies tissue under the top cover
- Illumination with LED band around the cooling plate
- Powered by computer power supplies
 - Separate power supply for the Peltiers due to large consumption and to operate water cooling independently
- Whole setup hosted in moveable cabinet

Final Cloud chamber

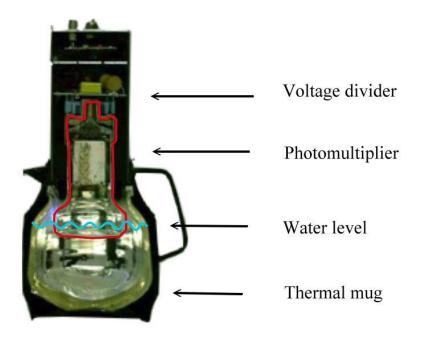
13

Cost estimation

Peltier elements (10)Power supplyCopper plates (2)Plexiglas for hoodCooling ripsThermal paste

Power supply Radiator (2) Pump 30 USD
60 USD
40 USD
10 USD
25 USD
20 USD

Basic cloud chamber **165 USD**


35 USD 90 USD 45 USD Water cooling circuit 180 USD

Kamiokanne

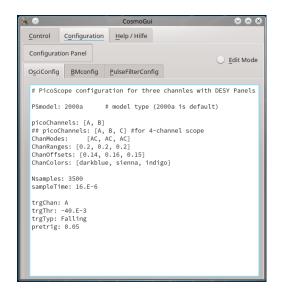
Kamiokanne detector

- Water Cherenkov detector in a coffee can (German: ,Kanne')
- Photomultipier coupled to a water filled thermal can
- Traversing cosmic muons create Cherenkov light in the water
- Developed 1997 at JGU Mainz, until then in use for student courses and school outreach at several German universities

Measurements and Outlook

- Possible Measurements
 - Count rates at different heights and with different absorbers
 - Concept of dark count (can without water)
 - Signal / noise ratio estimation
 - Muon lifetime by with muons decaying in the water \rightarrow double pulse

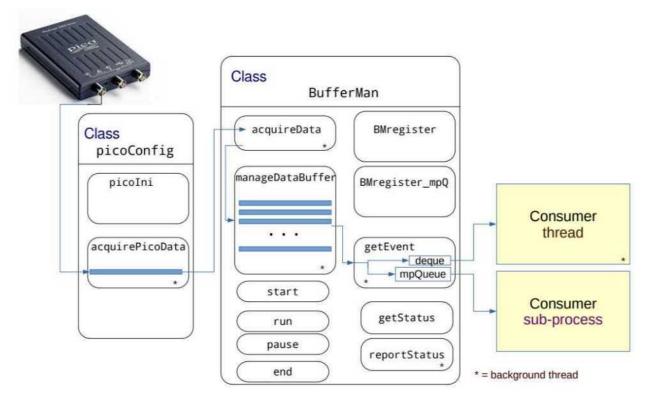
- Outlook
 - HV needed for the PMT gives legal issues in the usage with school students
 - Readout with a PMT with integrated HV generation
 - Readout with a SiPM and light guiding fibers under development

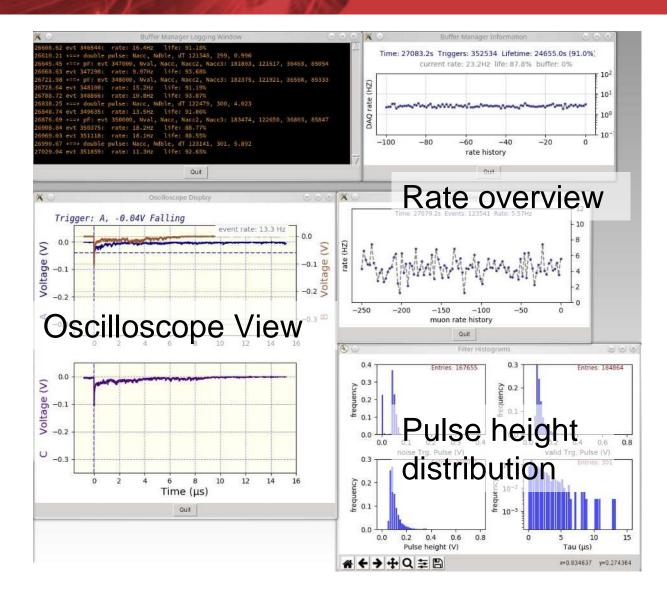


Readout framework

Concept

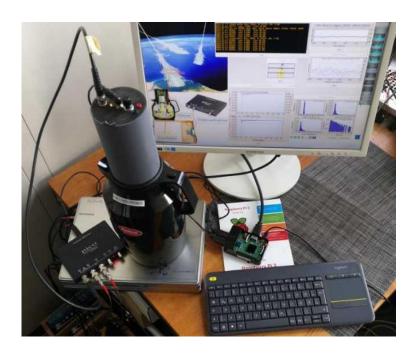
- Readout with an USB oscilloscope (PicoScope) and DAQ software at the computer (e.g. RaspberryPi)
- Implements the modern data taking approach with early stage digitization
- Concept of an oscilloscope is also well known to school students no "black box" DAQ
- Small setup with ,cheap' components
- Flexible through own readout program


<u>× •</u>		CosmoGui	8 8 8
<u>C</u> ontrol	Configuration	Help / Hilfe	
Cosmo Cor	ntrol Panel		X Abort
	Kamiokanne	e & CosMO Detector	s with PicoScope
DAQ config	g file: default.da	q	select
Run T	ag: CosmoRu	n	


		CosmoGui	and the second second second	<u> </u>
<u>C</u> ontrol	Configuration	<u>H</u> elp / Hilfe		
🕮 <u>E</u> nglish				<u> </u>
Besch	nreibung	picoCos	smo	Ê
Detektoren entstehen, Teilchenwel	zum Nachweis vor z.B. den Szintillator lt, <u>http://www.Teilc</u>	n Myonen aus der rplatten des CosN : <u>henwelt.de</u> , oder	llyse kurzer Pulse, di Kosmischen Strahlu IO-Experimtens des I im Kamiokanne-Expe ırch eine Photoröhre	ng Netzwerks eriment
PichoTechn aufgezeichr	ology) aufgenomn	nen. Ein Puffer-Ma an Consumer-Pro	szilloskop (PicoScope anager sammelt und zesse, die sie in Echtz	verteilt die
Die Analyse	der aufgezeichne	ten Pulsformen ve	erläuft in drei Schritte	en:
1. Valid	lierung der Trigge	er-Schwelle des C	szilloskops	
Must	erpuls verglichen	und das Signal ak	gerzeitpunkt mit eine zeptiert, wenn die Fo e überschritten wird	rm gut
2. Such	e nach Koinziden	zen		
Trigg		cht. Bei mehr als	en Kanälen in der Na einem angeschlosser	nen

Code development

- Python framework developed by Günter Quast and Lars Vielsack (https://github.com/GuenterQuast)
- Implements a buffer manager and correlation function for trigger pulses with reference pulses
- Double pulse trigger possible




User interface

Example study

- Measurement of the muon life time with the Kamiokanne
- 20 days data taking
- $\tau = 2.1 \pm 0.3 \ \mu s$

Summary

- Cloud chamber as a cheap self build particle detector
- Water Cherenkov detector Kamiokanne
- Custom python readout framework for USB oscilloscope

helios