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STONE AGE = BRONZE AGE = IRON AGE

Mesolithic (Middle Stone Age) Begins

10,000 BC

Neolithic

5,00

Palaeolithic (Old Stone Age) Begins

8,000 B¢

ISTONE AGE

The Stone Age lasted for a very
long period of time! It stretches
from the very beginnings of
humanity three million years

ago, to the farmers that lived a e250008C 10,000 BC & 4500 B¢
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The Bronze Age was a period of time
between the Stone Age and the Iron Age,
when bronze was used widely to make
tools, weapons and other implements.
Bronze is made when copper is heated

&
and mixed with tin, creating a stronger i

metal than copper. e ks sy

bell-shaped drinking toois. When they arived they brought
with them the knowledge of making bronze.

4,500 BC - 3,500 BC

od in Britain

Before this period, people would move from
place to place hunting and gathering wild
plants. Over time, & new vty of ife was
introduced from Europe. Pecple started
planting crops and faming animals such as
sheep. cows and pigs.

2800 BC

4,000 BC
Pecmanent houses, potiery 3nd & 3

The prehiatonc monument Storehenge s eroctod,
a huge monument that consisted of giant stones
amanged into circles. It s belioved that the siones
were ransporied from 250 mies away. It is st
not known what stonehenge was used for

Now that sione age peoplo were farming, they started to settie down in

In a time when people were constantly
communities with other famikies. Bacause there were more pecple, the houses

moving around in search of food and
sheter, waiking around 0n foot was siow
and painfl. Horses were used as faster
transport: a way 1o camy peopie and
belongings.

that were used for tasks such as canrying water, cooking and farming.

IRON AGE

The Iron Age was the period of
time after the Bronze Age. It is
the third and last stage of the
three-age system. It's named
the Iron Age because people
started using iron to make tools
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The house of choice in the Bronze Age was the
Roundhouse.

in the centre inside the buiding that would have been
used for cooking and for warmith. The smoke from the
fire would escape through small gaps in the thatched
roof.

n was possble when using just filnt and
\a

People start mining for copper on a large industrial scale, digging
deep beneath the earth's surface. They would use strong bronze
pickaxe’s 1o collect rocks containing copper (copper ore).

and weapons: this was a much
stronger and reliable metal. We
call the people that lived in Iron
Age Britain ‘Celts’.

The Celts wore brightly coloured clothing, made
using dyes made from berries and plants. Celts
were very clean people, apparently they invented
30ap! Some people st speak languages that the
Cetis spoke - Welsh and Gaelic.

A hill fort was a type of seftiement that was buit
on a hil, high up from the rest of the ground. The:
Celts would construct high walls and dig deep.
ditches around the Ml to stop nasty pecple from
invading their settiements! People would invade.
hill forts in search of rare, precious metals such
38 bronze, iron and goid

Ceits made tools and weapons out of a metal
called iron. Unlike bronze which is poured, iron is
worked into a shape by repeatedly heating and
hammering against an anvil (a hard piece of
stone). This process is called smithing. lon is.
much harder than bronze and keeps a cuting
edge for longer, which is great for swords!



— Each age is levelled by the Material
= that bearing the new technology
= that makes the new society

What will be the next age??
What will be next material??

CARBON AGE
or
GRAPHENE AGE !
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Properties of graphite:

1. Graphite is a soft, slippery,
grayish-black substance. It is
metallic luster and is opaque

2. Specific gravity is 2.3.

3. Graphite is a good conductor
of heat and electricity.

4. Although graphite is a very
stable allotrope of carbon but
at a very high temperature it
can be transformed into
artificial diamond.

5. Chemically, graphite is
slightly more reactive than
diamond.

Properties of diamond:
1. It is the hardest substance
known.

2. It has a high refractive index and
gives an extraordinary brilliance.

3. The specific gravity of diamond
is 3.52.

4. Diamond is a bad conductor of
heat and electricity because it lacks
free electrons.

5. Chemically, diamonds are un-
reactive under ordinary conditions.

Hardness (GPa)




Graphene Oxide

Graphene

Layer Number

Raman shift (cm-1)

Graphene

Graphite Oxide

: Graphite
Graphene
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Six Giants of carbon materials

(1991)
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http://www.condmat.physics.manchester.ac.uk/people/academic/
http://www.condmat.physics.manchester.ac.uk/people/academic/

Characteristics of Graphene

—>World's first 2D-Materials
—>World’s strongest material
(100-300 times stronger than steel: 1 TPa)
—>World’s lightest/ultra-light material
(Density 4 times lower than copper)

—>World’s thinnest/ultra-thin material
(0.34 nm = One million times thinner than a human hair)

— Smallest molecule

— High surface area of ~2500m?/g

— World’s incredibly flexible material
(highly stretchable, transparent and impermeable)

—>World’s superb transparent conducting
material (5-order times that of copper)

—>Able to filter harmful organic materials
— Superconductor

- _—
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Synthesis Process of Graphene

Liquid-Phase
Exfoliation
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Application areas of Graphene

Construction materials

Interior and wings

A 4 of aeroplanes

Antimicrobial materials "
Lubricants

\/
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Battery and supercapacitors

Wings of wind
turbines

Flame retardants




Application areas of Graphene

High speed Transistor Conductive Ink
RFIC,Sensor EMI screen ink

Flexible Display
Touch Panel

Solar cell, Battery
Supercapacitor

Automobile
Alr plane components




Touch screen 1
(@sq™)
Smart window R
Flexible LCD ’ .
Flexible OLED & ‘
_ Solar cell
A



Applications of Graphene based on Synthesis Process

Transparent -~ Touch Screens,
Electrodes Sensors ~S3 OLED:s,
Solar cells,

smart windows

- o FETs and
paints, " interconnects
polymer filters, M ' ~ component
Battery electrodes,
superconductor

sensors Graphene

Synthesis
Methods
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Transistors

B circuits,
Research Interconnects
Purpose | Memory

Semiconductor



Supercapacitors
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Advantages Target Markets

v’ Fast power delivery but less energy v Mobile phones
density v Camera

Energy Storage
Devices

Due to the extremely high

v \Wide temperature compliance range v Veehicles (bus, lifters, cars, trucks ~ Laser

v" Longer lifetime than Li-ion batteries v' Back-up system
v' Simplicity v Renewable energy

~ ULTRA/SUPER CAPACITORS

100 years old technology enhanced by
modern materials based on polarization
electrolytes, high surface area electrode
and extremely small charge seperation

Film foll

Graphene Advantages ECDL (Electro Cical Double Layer) Capa

| L} Sardess steed ate " l

* High surface area to weight ratio (2600 m2 /g)
* High conductivity
* Measured specific capacitance 135 F/g

Uses

* Electric vehicles

* Backup powering

* High power capability
* Cell phones

C=¢ Ald
Minimize (d)
Maximize

(a)
E=t2CV

Scribed Separator& = Sheet of
Graphene  Electrolyte plastic
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PHOTOVOLTAIC CELLS |

Currently: silicon wafers, thin filg
Graphene Advantages

* Transparent conducting electrode Lu.aﬁ«\-‘1
* Robust, conductive, abundant / T —

4

Organic solar cells

« Transparent conducior

* Cheaper than ITO
* Enhanced light trapping
* Efficient charge transport (1 D)

A new design:

* Layer of graphene (transparent cathegal
* Conductive polymer (maintains integ

* Zn0O nanowire layer (electron transpc

* PbS quantum dots (hole transport)

* Au layer (anode)

* 4.2% conversion efficiency (5.1% for vy
* Cheaper to produce

* B
Solar cells Translr
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g
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MAJESTIC FUTURE

> Advancements in touch screens

Transparent-Flexible
Touch Screen

—

~ Electronics Engineering

»Will definitely replace silicon and
germanium as device material.

» Conducting material on PCBs.
»Single molecule sensors

» Touchscreens

»Graphene transistor.
»Graphene integrated circuits.
»Graphene chips.




» In Manufacturing process as Manufacturing material.

» As a composite material for machines ,cars.

» Defense.
» Airplanes, space shuttles , satellite.

The car’s body panels serve as a battery

The latest ials made of

thin and strong carbon fibre replace the car s
steel body panels and can be used in the car's
roof, doors, bonnet and floor. These panels
also double up as the car’s battery.

Expected range is
130 km when the
doors, roof and bonnet

The car's weight can be red
ced by 15 percent. There is
potential for cutting weight still
further.

The material can be recharged by
1) hamessing the energy generated when the car brakes
2) plugging into the mains electricity grid

Mechamcal engmeenng
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Superhero Vision Coming in Granh =
raphene Advantages
Graphene Contact Lenses i iriie Surkace Arda
* High Electrical Conductivity
* Thinness and Strength

wephene-Layers |

hen Na
I’r o" e . & | Graphene-ONA Nano-Garpet

Uses |

* Efficient Bioelectric Sensory Devices |

* Able to monitor Glucose level, cholei®, .
DNA sequencing, Haemoglobin level *%=5

* Toxic Graphene as anti-cancer treat(Z4 %%

* Process of Tissue Regenration {1\-"'.. .

Bacterial

New sensor could make + In 2010, the Chinese Academy of
- - Sciences has found that sheets
night vision

of graphene oxide are highly
effective at killing bacteria such




Graphene in Bio-applications
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Graphene in drug delivery into the interior of a cell
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Applications chart for Graphene companies

SP°“if§ goods Anti-bacterial ‘1\’ LCD Touchscreen OLEDs
Plastk s "B mEmmm—_

. .;_;-‘:' Automotive
3%

Telecommunicati __~ .
Military &y
. and g
Medical and defense I
biomedical 3% Construction Marine
2% 1% 1%

145 yoars
of ighting the way.



A roadmap for graphene

Other
» ® Composites Tires

= Energy storage and Water filteration
supercapacitors

_ Anti corrosion coating
» Inks and coatings

Transistors
Sensros and logic RFID antenna

Transparent » Permeation protection composites
conductive films
Research ® Thermal composites
@ Conductive composites
Other
m Sensors
m Research
m Other energy storage

m Silicon anode

® Li sulphur battery

m Supercapacitors
® Functional Inks
m High strength composites

® Transparent conducting film




/

Vision — Future Applications of Gra

)

Platform ‘

One Atom Thin

Linear ? oI
spectrum Stren,
3 P fg
{Graphene!
High s Highly
mobility flexible

Unique optical
properties

2d crystals
and hybrids

On demand g
Nanoribbons
Growth on flexible sub

Composites
- Stronger
+ Multifunctional

'(Opto)electronics

- Faster

+» Cheaper

+ Flexible
Energy storage
and conversion

Efficient
« Cheaper
« Sustainable

Health |
+ Ultrasensitive

Inks

Interfaces
= Doping 4
Industrial Superstructures J 1 i =
Academic Toxicology A Academic workshare

|+ Label-free

Mobility >50000cm?/Vs
on large area

Wafer scale

doping control Large area

2d crystals

Young modulus
>100 GPa composites;

S~

THz imager

elec

P = - -,
‘modulation (0.05-10dB Medical repair kits

High surface area

> 2,000 m?/g)

Ultrafast optical

response (<50 Self-powered flexible

mobile devices
Distributed sensor ‘
networks

Fiber-optical
communication system

\
Flexible electronics and
optoelectronics

‘ Printed RF tags

ble OLED

- ystem
Integration

n and displays

Energy
" Composites |
(Opto)electronics
Health

Spin logic circuits

Ultrafast low-power

tronics



Vision-Graphene-based display and electronic devices

N
= b e = - :{ Transferred or dnpctly grown large-area graphene |
Graphene transfer & 3 - high quality) '
l (m;chum quality) N ngh-freguency | e 4 | Future devices
—— - | transistor ' Logic transistor/ |
+ thin-film transistor J
_____ g D —

Optics =yl Functional
surface
material Ty
Transpafency ‘ b B ] Mode-locked
& comp||ancy Modulator semiconductor' laser
lntegrahon & Transferred Solid-state mode-locked laser THz wave

N 54\ izati graphene ' ‘ w generator
lntegfated - w customization (high quality)  Tunable fibre mode-locked laser

Sensors ‘ THz wave detector

P % Energy efficient
Energy A computing




( Prototype Graphene Phone:within 3 years)

» .




| Magnetic properties
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Magnetic devices using Graphene
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Functionalization of Graphene by
and Nitregen; lron; Gola Cobpalt=——-

Why Carbon / Graphene??

Carbon-based materials are very
promising for spintronic
applications due to their weak

spin-orbit coupling and

potentially providing a long spin
life time




Graphene-G raph ne-G raphane [ttty

Graphene: " - (conductor) A 3 S| Graphone: The semi-
crystal made Of 3 raplnelne jj hydrogenation of
carbon atoms J} i YFELIERE (e

atoms are the white
arranged in a dots) makes the
honeycomb . ' . ' material ferromagnetic
lattice s g 6 I

Conversion sp2— sp? ‘

(Insulator)
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http://www.gizmag.com/graphene-computer-chips/11399/
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C K-edge XANES of Semi-hydrogenated Graphene Sheet
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Determination of C-H content from C K-edge XANES spectra
CH ratio

065:032:0.19~6:3:2

= Tri-layer Graphene
== on Silicon-substrate

_03F N
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Partial hydrogenation (Graphone)




Silicon-Functionalized Graphene Nanoflakes: Electronic Structure
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u,H (Oe)
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- (C) si/(Si+C) = 0.35
I IM".".‘:/:}“‘.

—=Mg values are reduced with increasing coercivity
(H,) as the Si-content is increased, implying the loss
of magnetization with silicon content.

—=>With increase of Si-content, non-defect Si-C
tetrahedral bonding along with SiO are formed that
make sp3-rich structured GNFs materials that are

—=Formation of Si-O-C due to air exposure known as a
defect structure that is responsible for the reducing of
ferromagnetic behaviours

Saturation magnetization (Mg), Coercivity (H.) and
Remanence (Mg) of GNFs and GNFs:Si.
|

Sample Si M,(x106 emu/g) H. (Oe) Mg(x10-6 emu/g)
Si+ 0
Ratio 40K 300K | 40K A300K 40K 300K

GNFs 0.00 | 172553 | 27.19 | 66.00 § 8127 | 9.38 5.83
GNFs:Si | 027 62.05N/6.92 | 90.00 J108.00| 462 2.25
GNFs:Si | 035 13.00 | 12.00 | 149.00 | 101.00| 2.85 2.20

o ! . ! 0K 800K Ferromagnetic materials with high coercivity are called
-4000 -2000 0 2000 4000, magnetically hard materials, and are used to make permanent
p,H (Oe) magnets. Materials with low coercivity are said to be magnetically

Ray et al. 2015 (

soft and are are used in transformer and inductor cores,
) ling heads, microwave devices, and magnetic shielding.




Nitrogen-Functionalized Graphene : Tunable PL and Electronic Structure, Magnetic Behaviors

Intensity (arb. units)

Current Density J (mA/cmz)
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Nitrogen Functionalized Graphene: Ferro-Magnetic Behaviour
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Magnetic Force Microscopy images of pristine
Graphene, Graphone, N-graphene and Siliphene
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Magnetic properties of the pristine and plasma treated graphenes at 40 K and 300 K

Sample/ H. (Coercivity) | M (Saturation M, (Remnant

Temperature (Oe) magnetisation) magnetisation)

(emu/gm) (emu/gm)

112.37 3.47 x 10 0.52 x 104
62.98 2.60 x 104 0.42 x 10

Graphone
40K 76.19 13.94 x 104 1.91 x 10
300K 52.88 12.91 x 104 1.28 x 10

N-Graphene

40K 40.00 118.62 x 104 9.74 x 104

6.04 x 104

300K 111.91 x 104

Siliphene

40K 0.11x 10+ 0.03 x 104

0.09 x 10
Ray et al. 2016,

300K 0.02 x 104




Role of Oxygen Functional groups (C-O, O-C-OH, C-OH)

of Graphene / Graphene Oxides: Magnetic behavior

Reduced
Graphene oxide

Grgphene oxide

Graphite




SEM, TEM, Raman and PL of Graphene Oxides

FE-SEM images: Change of surface morphology
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C and O K-edge Scanning Tunneling X-ray microscopy (STXM) -XANES spectra
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Magnetic behavior of Graphene Oxides

Oniginteirmeagnen cioenaVIorAniGrapnenex©xiciess
In general,
—=Symmetry breaking at the edges
= Vacancy
= Substitution and absorption of atoms

DFT calculations:

(i) The local spin moment of the carboxyl
(COOH) and hydroxyl (OH) functional groups
adsorbed on the GRAPHENE are 1.00 i,
0.56 1, respectively.

(i) Two hydroxyl groups at non neighboring
carbon atoms (having one carbon in between)
favors the magnetism in GO

(iiif) Hydroxyl groups present at neighboring
carbon atoms shows no magnetism !!

(iv) The most stable magnetic configuration
corresponds to seven OH-groups

. Ref: (i) Santos, E. J. G. eta |. New J. Phys. 2012, 14, 043022.
(i) Wang, M. et at. Nanotechnology 2011, 22, 105702.
(iit) Boukhvalov,D. W. et al. ACS Nano 2011, 5, 2440

y @A NN

Wang & Ray et al. 2015, Sci. Reports

GO is usually considered as an diamagnetic
insulator / semiconductor material

Carbon-based materials are very promising for spintronic
applications due to their weak spin-orbit coupling and potentially
providing a long spin life time

After subtracting the diamagnetic (Si-substrate) contribution
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X-ray Magnetic Circular Dichroism (XMCD) of Graphene Oxides
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C and O K-edge: X-ray magnetic circular dichroism (XMCD) spectra with the photo-helicity
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Wang & Ray et al. 2015, Sci. Reports
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Electronic and magnetic properties of GO:Nx functionalized with Iron oxide
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Graphene is a new hope for electronic devices and could
possibly replace or rejuvenate Silicon based devices. It
seems to be a better material than Silicon and CNT.

Lack of Natural Band Gap prevents Graphene to replace
Silicon based devices very now.

Successful prototypes include Superconductor, Flexible
Displays and Ultra-Capacitor.

It shall introduce new era of devices for electronics, space,
bio-medical and energy harvesting.

Graphene devices might surround us very soon.




Graphene/Graphene based Carbon for Bio-imaging application
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Fluores c;e,m@‘arb@n Nanoparticles for Bio-imaging probes
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Carbon Nanoparticle-based Fluorescent Bioimaging Probes
S.IK, Bhumia, A, Saha, AR, Maity, S.C. Ray amd N.R. Jana
Sciemtiffic Reports [2013] 32 1473 (1-7) : www.nature.com/scientificreports
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Vision — Applications of Graphene
(within 50 years)




Vision — Applications of Graphene
(within 50 years)!




ATTENTION

GRAPHENE Gl evontionize our world

Graphene is a one-atom thick
layer of carbon arranged in a
honeycomb lattice, When
millions of these are stacked
one on top of another they form
graphite - 3 mineral consisting of
carbon which is found in pencils.

Graphene was discoverad in
2004 at the UK's University of
Manchester by physicists

Andre Geim and Konstantin
Novoselov when they isolated a
single-layer of graphene using
Scotch Tape before going on to
demonstrate its remarkable con-
ductive and resilient propertics.

Gelm and Novoselov's work earned them the Nobel Prize in physics in 2010 and
today researchers are in a race o realize its technical and commercial capabilities.,
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of lighting the way



