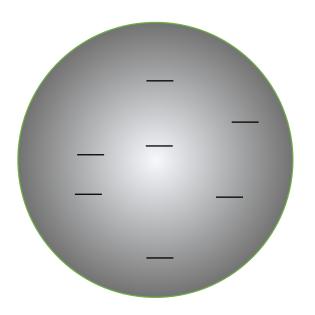
Auto-stabilized Electron

Munawar Karim

Department of Natural and Applied Sciences Namibia University of Science and Technology, Windhoek Department of Physics, St. John Fisher College, Rochester, NY

Why is the electron stable?

- Negatively charged sphere
- Mutual repulsion



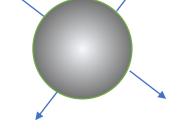
What holds the electron together?

- Puzzle since 1895 (J J Thomson)
- Yet unsolved in spite of heroic attempts over 123 years
- Solutions sought in quantum electrodynamics (QED)
- All approaches lead to infinite outward pressure
- And unstable electron electron should explode
- But the electron is stable!

What is the outward pressure?

- Energy per unit volume: $\left[\left(\frac{1}{4\pi\epsilon_0}\right)\left(\frac{e^2}{r}\right)\right]\left(\frac{1}{\frac{4}{3}\pi r^3}\right)\frac{J}{m^3}$
- $r = \frac{\hbar}{mc}$ (Compton wavelength of electron)

•
$$\frac{e^2}{4\pi\epsilon_0} \frac{1}{(\frac{4}{3})\pi(\frac{\hbar}{mc})^4} = 10^{18} \frac{J}{m^3}$$



• 10¹³ atmospheres!!

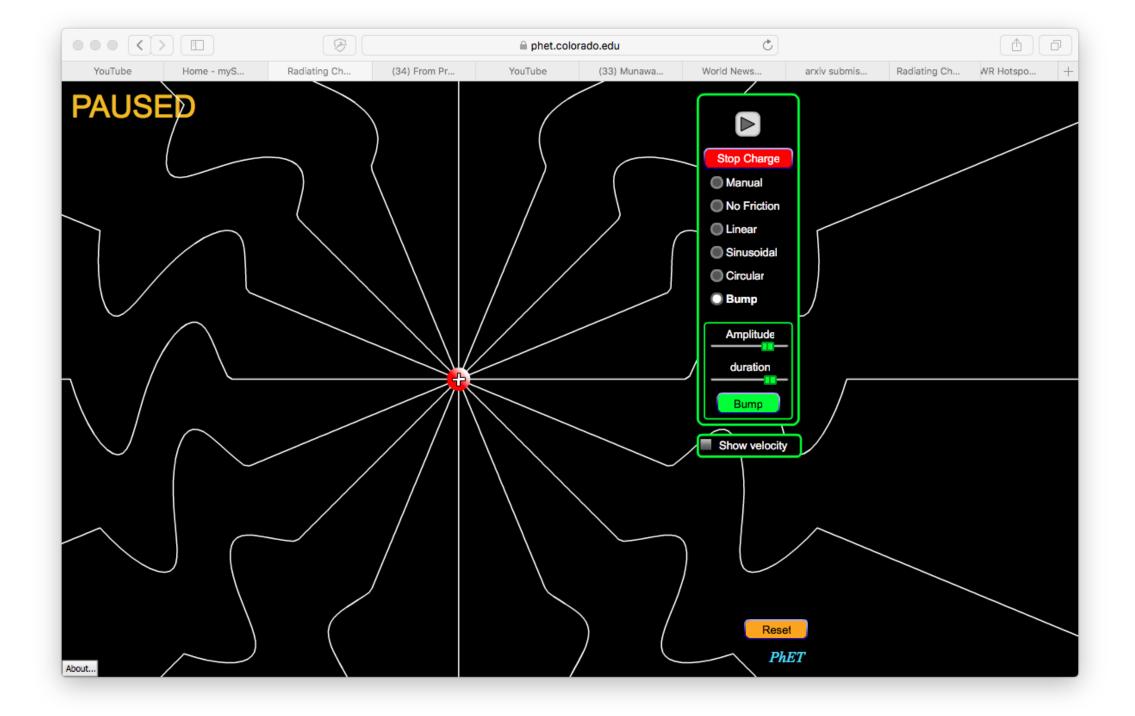
At these pressures space-time is not flat

When energy density is high space-time geometry is not flat

Geometry ↔ Energy density (Einstein equation)

Applet for radiating charge

https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html

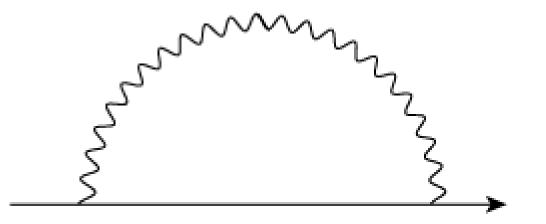


Near zone and Radiation zone

- Retardation effects due to finite speed of light
- Near zone extends to $r = \frac{\lambda}{2\pi}$
- As λ decreases (or frequency increases) so does r
- As *r* decreases so does volume
- Energy density increases as r^4
- Space-time curvature increases

Field energy in the near zone

- Energy is exchanged between accelerating charge and near zone field
- Energy is stored in near zone: adds to inertia of accelerating charge
- Shows up as increase in mass of electron
- Since there is no lower limit on λ current theories predict the mass increases to infinity



"Emission and absorption of virtual photons"

The mass correction is a sum over all allowed photon momenta k^{μ}

$$\Delta m = \int_{-\infty}^{\infty} \frac{\tilde{u} \left(2m + 2k^{\mu} \gamma_{\mu}\right) u}{k^2 - 2\vec{p} \cdot \vec{k}} \frac{d^4 k}{(2\pi)^4} \frac{1}{k^4}$$

 $\mu \equiv \Delta m$

This integral is infinite

This has been the situation since 1945

Attempts to truncate the integral

- Abraham-Lorentz self-force (1904)
- Cut off the upper limit to Compton wavelength (Bethe 1947)
- Alter the laws of electromagnetism at short distances (Tomonaga, Schwinger, Feynman 1949)
- Assume dimensions of space time are continuous (T'ooft, Giambiagi 1972)
- None of these works: integral remains infinite
- None of these assumptions is justified

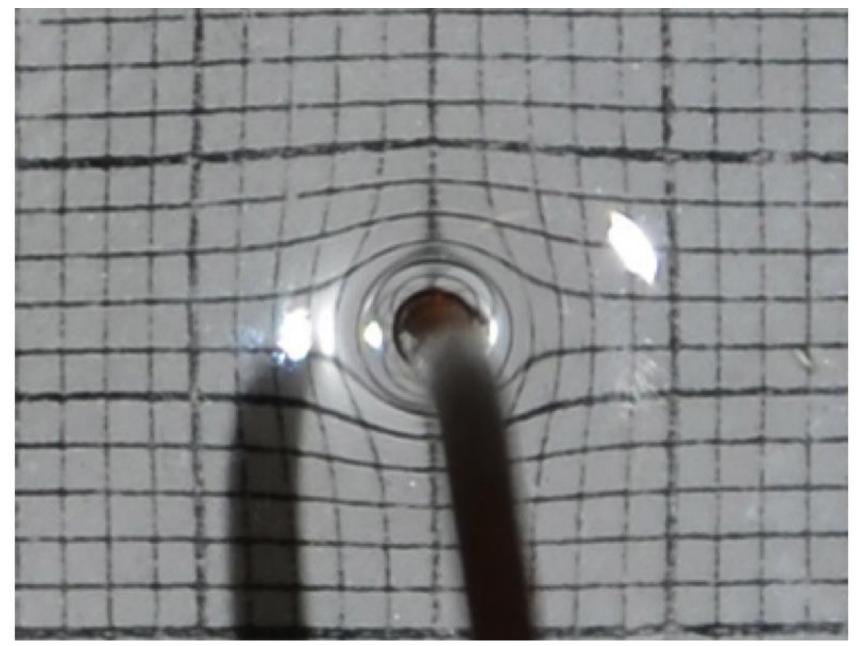
"Since the mathematicians have invaded the theory of relativity, I do not understand it myself anymore."

A. Einstein (1949)

In the near zone if the energy density is high space-time is not flat

Geometry is altered: must introduce gravitation

Example of curved metric



In order to include gravitation need to solve Einstein equation

Geometry ↔ Energy density (Einstein equation)

$$G^{\widehat{0}\widehat{0}} = 8\pi T^{\widehat{0}\widehat{0}} = 8\pi\rho$$

$$G^{\widehat{1}\widehat{1}} = 8\pi T^{\widehat{1}\widehat{1}} = 8\pi P$$

Relate Pressure P and density ρ

Equation of state

- Relate pressure and density
- $dE = -PdV; \ {^{dE}}/_{dV} = -P$
- $E = \rho V$; $dE = V d\rho + \rho dV$

•
$$P = -\rho - r \frac{d\rho}{dr}$$

• $\rho = \frac{1}{\sqrt{g_{11}} 4\pi r^2} \frac{d\mu}{dr}$
• $\Delta m = \mu = \int_{-\infty}^{\infty} \frac{\widetilde{u}(2m + 2k^{\mu}\gamma_{\mu})u}{k^2 - 2\vec{p}\cdot\vec{k}} \frac{d^4k}{(2\pi)^4} \frac{1}{k^4}$

Steps needed

- Introduce a dimensionless variable $\eta = \frac{\hbar}{2mc} \frac{1}{r}$; value to be determined
- Integrate to an upper limit k (yet unknown)
- Integral is then

•
$$\Delta m \equiv \mu(\eta) = \frac{\alpha m}{2\pi} \left[-\frac{\eta}{2} \sqrt{1 + \frac{1}{\eta}} + \eta + \eta \ln \left\{ \sqrt{\eta} \left(\sqrt{1 + \frac{1}{\eta}} \right) + 1 \right\} \right]$$

• The density is $\rho = \frac{1}{\sqrt{g_{11}} 4\pi r^2} \frac{d\mu}{dr}$

Equation of hydrostatic equilibrium

- Insert P and ρ
- $G^{\widehat{0}\widehat{0}} = 8\pi T^{\widehat{0}\widehat{0}} = 8\pi \rho$
- $G^{\widehat{1}\widehat{1}} = 8\pi T^{\widehat{1}\widehat{1}} = 8\pi P$

•
$$\frac{dP}{dr} = -[\rho(r) + P(r)] \frac{[\mu(r) + 4\pi r^3 P(r)]}{r^2 (1 - \frac{2\mu(r)}{r})}$$

• Solve equation of hydrostatic equilibrium for r when P(r)=0

Conditions for equilibrium

- Energy is stored in the metric
- Metric pushes inwards, electron field pushes outwards
- Until both inward and outward pressures are equal at P(r)=0
- Equilibrium is stable

• This occurs at
$$r = \frac{1}{2\sqrt{2}}\sqrt{\frac{\alpha}{4\pi}\frac{\hbar G}{c^3}} = \frac{1}{2\sqrt{2}}\sqrt{\frac{\alpha}{4\pi}}\ell_P = 10^{-37}m$$

- This is the radius of the electron
- Inward and outward pressures are 10^{109} atmospheres

Conditions at equilibrium

- At *r* the two competing pressures are equal
- The equilibrium is stable
- If the momentum k increases so does the opposing pressure
- The system is self-correcting
- The electron is auto-stabilized

$$\alpha = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{e^2}{\hbar c}$$

The corresponding energy is
$$\sqrt{rac{lpha}{8\pi}rac{\hbar c}{2G}} = \sqrt{rac{lpha}{16\pi}}m_P = 10^{17}~{
m GeV}$$

At this energy all forces merge (Grand Unified Theory energy)

Results are independent of \hbar

Conclusion: from first principles

- We have explained why the electron is stable: "autostabilized"
- We have calculated the radius of the electron
- We have calculated the GUT energy $10^{17}GeV$
- Shown that the unified field is continuous
- Successful theory of quantum fields in curved space time

"You know it would be sufficient to really understand the electron"

A. Einstein

THANK YOU!!