Argon Emulation in The Simulation of the ATLAS Transition Radiation Tracker

Hassane HAMDAOUI hassane.hamdaoui@cern.ch

July 2, 2018 Windhoek Namibia

African Conference on Fundamental Physics and Applications

جامعة، محمد الحامس بالرباط Université Mohammed V de Rabat

Outline

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

Introduction

LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco

Introduction

Hassane HAMDAOUI

Introduction

LHC

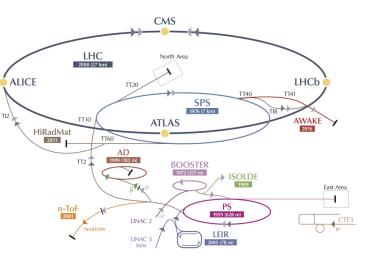
ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation Implementation


Results

Electron: Muons

Conclusion

Backup

Mohammed V University in Rabat Morocco 20

Overview of the CERN accelerator complex

Introduction ATLAS Experiment

Hassane HAMDAOUI

Introduction

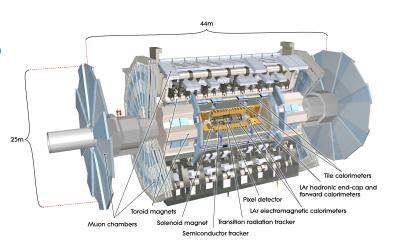
LHC

ATLAS Experiment

TRT

General Concept Detection Principle

Emulation


Motivation Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

Computer generated image of the ATLAS detector

Mohammed V University in Rabat Morocco

General Concept

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

TRT

General Concept

Emulation

Motivation Implementation

Results

Electrons Muons ROC curv

Conclusion

Backup

 \checkmark The Transition Radiation Tracker is one of the three sub-detectors of the ATLAS inner detector situated in the 2T magnetic field of the central solenoid.

 \checkmark TRT is the outermost layer of the inner detector .

 \checkmark TRT: 6.8 m in length and 2.2 m in diameter and weighs about 1500 kg .

 \checkmark Provides tracking information for charged particles with: $*|\eta|<2$

*pT > 0.5GeV

 \checkmark The TRT has two different geometrical arrangements of straws

- Barrel : Straws parallel to the beam axis
- End Cap : Straws perpendicular to the beam axis

Mohammed V University in Rabat Morocco

TRT General Concept

Hassane HAMDAOUI

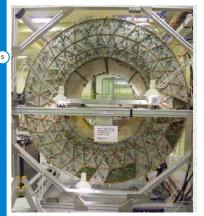
Introduction

LHC ATLAS Experiment

TR

General Concept Detection Principle

Emulation


Motivation Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

Barrel

End Cap

Mohammed V University in Rabat Morocco

TRT Detection Principle

Hassane HAMDAOUI

Introduction

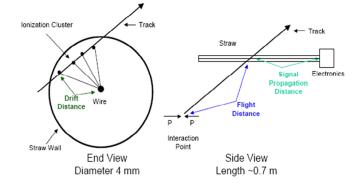
LHC ATLAS Experiment

TRT

General Concept

Detection Principle

Emulation


Motivation Implementation

Results

Electrons Muons BOC curves

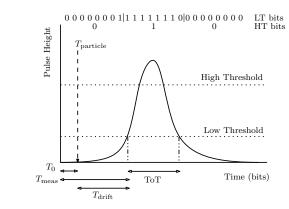
Conclusion

Backup

Cluster Arrival Time = Flight Time + Drift Time + Propagation Time

Descriptive schematic of time measurement by a straw tube from TRT

Mohammed V University in Rabat Morocco



TRT Detection Principle

Mohammed V University in Rabat Morocco

20

Schematic display of a signal pulse created by a particle when crossing the straw

- LT: for particle tracking
- HT & ToT : for PID

TRT Detection Principle

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

TRT

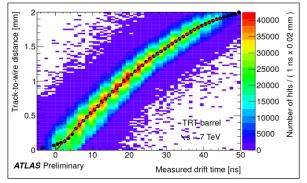
General Concept

Detection Principle

Emulation

Motivation Implementation

Results


Electrons Muons ROC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco 20

R-t relation curve

From time to distance

20

Emulation Motivation

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation Implementation

Results

Electrons Muons BOC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco Leaking in the TRT straws \downarrow Losing Xenon Expensive \bigcirc \downarrow New Gas mixtures : Argon \downarrow Simulated samples take time and disk space

20

Emulation Motivation

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

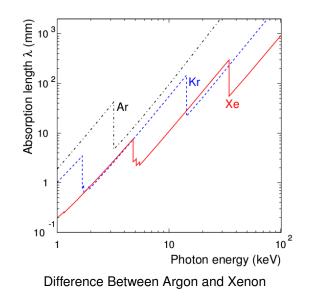
TRT

General Concept Detection Principle

Emulation

Motivation

Implementation


Results

Electrons Muons ROC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco

Emulation Motivation

Hassane HAMDAOUI

Introduction

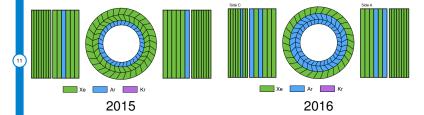
LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation


Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

Change of gas geometry of the TRT between 2015 and 2016

Mohammed V University in Rabat Morocco

20

Emulation Implementation

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation

Implementation

Results

Electron

Muons

ROC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco

- • Introduce new gas types in the ATLAS simulation framework : Emulated Argon
- Ø Mimic the HT response of the gas we wish to emulate : Argon
- Scale the TR absorption efficiency during the digitization by a TR efficiency reduction factor (TRERF)

Emulation Implementation

Hassane HAMDAOUI

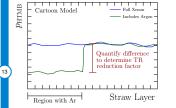
Introduction

LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation Motivation


Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

The TRERF is determined by comparing the HT probability versus straw layer (SL) for the gases

Region	Argon TRERF
Barrel	0.05
End Caps	0.2

Mohammed V University in Rabat Morocco

Hassane HAMDAOUI

Introduction

LHC

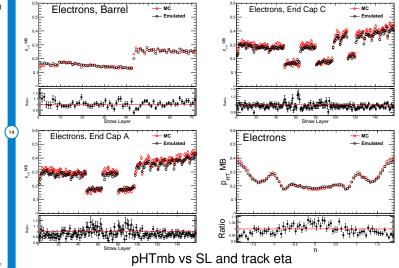
ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation Implementation


Results

Electrons Muons

ROC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

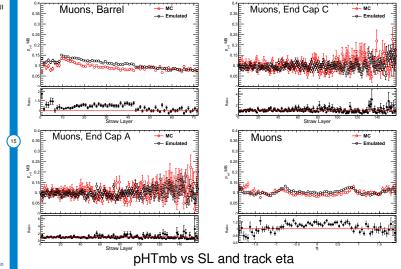
ATLAS Expe

TRT

General Concept Detection Principle

Emulation

Motivation Implementation


Results

Electrons

Muons ROC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco

ROC curves

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

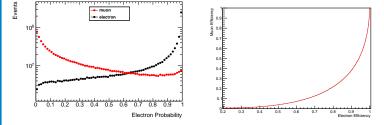
TRT

General Concept Detection Principle

Emulation

Motivation Implementation

Results


Electron

Muons

ROC curves

Conclusion

Backup

Electron probability and the corresponding performance curve calculated for muons and electrons from Z candidate decays. These distributions include tracks in all regions of the TRT and at all occupancies

Mohammed V University in Rabat Morocco

Results ROC curves

Hassane HAMDAOUI

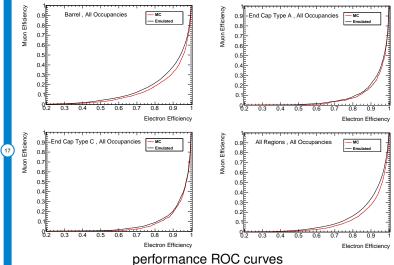
LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation Implementation


Results

Electrons Muons

BOC curves

. . . .

Deeluur

Mohammed V University in Rabat Morocco

Conclusion

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

TRT

General Concept Detection Principle

Emulation

Motivation Implementation

Results

Electrons Muons ROC curv

Conclusion

Backup

✓ Production and test of emulated sample with different TRERF for Barrel and End Cap

✓ Electrons respond very well to emulation

 \checkmark The best TRERF were chosen by relying only on electron plots

TRERF = 0.05 For Barrel & TRERF = 0.2 For End Caps

✓ Going to low TRERF lead to better agreement in electron and less for ROC curves

✓ Results consistent in high occupancy

Mohammed V University in Rabat Morocco

Backup Different TRERF Tested

Hassane HAMDAOUI

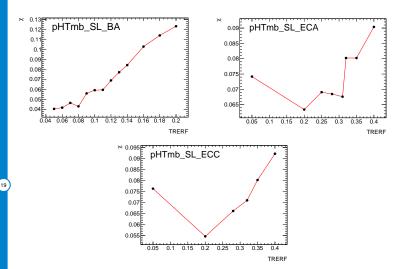
Introduction

LHC ATLAS Experiment

TRT

General Concept Detection Principl

Emulation


Motivation Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

Mohammed V University in Rabat Morocco

20

Backup Different TRERF Tested

Hassane HAMDAOUI

Introduction

LHC ATLAS Experiment

ATLAS Experi

TRT

General Concept Detection Principle

Emulation

Motivation Implementation

Results

Electrons Muons ROC curves

Conclusion

Backup

From each HT probability versus SL we calculate :

$$\chi = \frac{1}{n} \sum_{i=1}^{i=n} \frac{|Pemul_i - Pmc_i|}{Pmc_i}$$

(1)

n : number of bins *Pemul* : pHTmb from Emulated samples *Pmc* : pHTmb from MC samples

Mohammed V University in Rabat Morocco