Search for the Dark Vector Boson via the Higgs Portal

Diallo BOYE

On behalf of ATLAS

July 2, 2018

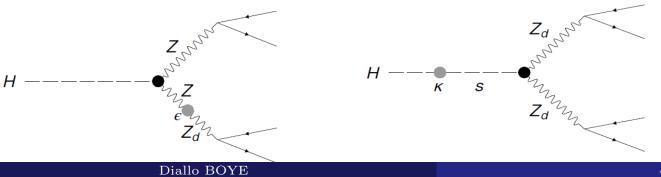
Outline

① Context and Objectives

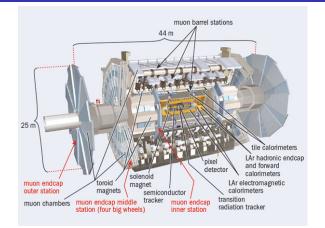
2 ATLAS Dectector

- **3** Signal and background simulation
- 4 Reconstruction, Identification and Selection

5 Run1


Context and Objectives

- Standard Model (SM) deficiencies
 - \rightarrow Many free parameters,(anti)matter paradox,hierarchy problem,strong CP problem, no gravity, no DE or DM...
 - \rightarrow Explanation of astrophysical observations of positron excesses
- Hidden (dark) sector states introduced with an additional U(1)d dark gauge symmetry appear in many extensions to the SM, the models are capable of
 - $\rightarrow\,$ providing a candidate for the dark matter (DM) in the universe
 - $\rightarrow\,$ explain astrophysical "observations" which may have DM interpretation
- This represents an alternative DM scenario to that of Super Symmetry


$$\begin{split} \mathcal{L} &\subset -\frac{1}{4} \hat{\mathbf{B}}_{\mu\nu} \hat{\mathbf{B}}^{\mu\nu} - \frac{1}{4} \hat{\mathbf{Z}}_{\mathbf{D}\mu\nu} \hat{\mathbf{Z}}_{\mathbf{D}}^{\mu\nu} + \frac{1}{2} \frac{\epsilon}{\cos\theta} \hat{\mathbf{Z}}_{\mathbf{D}\mu\nu} \hat{\mathbf{B}}^{\mu\nu} + \frac{1}{2} \mathbf{m}_{\mathbf{D},\mathbf{0}}^{2} \hat{\mathbf{Z}}_{\mathbf{D}}^{\mu} \hat{\mathbf{Z}}_{\mathbf{D}\mu} \\ \mathbf{V}_{\mathbf{0}}(\mathbf{H}, \mathbf{S}) &= -\mu^{2} |\mathbf{H}|^{2} + \lambda |\mathbf{H}|^{4} - \mu_{\mathbf{S}}^{2} |\mathbf{S}|^{4} + \kappa |\mathbf{S}|^{2} |\mathbf{H}|^{2} \end{split}$$

Context and Objectives

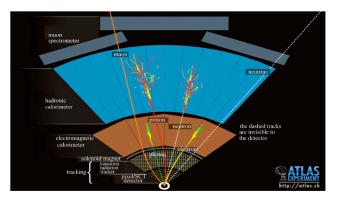
- \bullet Spontaneously broken dark gauge symmetry, $\mathbf{U(1)d}$ mediated by a dark gauge boson \mathbf{Z}_d
- $\bullet~{\bf Z_d}$ interacts with the SM thru kinetic mixing with hypercharge gauge boson
 - Kinetic mixing parameter ϵ
- Also, a **dark Higgs mechanism** could spontaneously break the U(1)d gauge symmetry
 - Mixing between the SM-Higgs and dark higgs boson, mixing parameter κ
- The U(1)d kinetic mixing scenario could be generalized to include a mass mixing between the SM-Z and Z_d
 - Mass mixing parameter δ

ATLAS Dectector

• Tracking System

 \rightarrow reconstruct charged particles trajectories

• Thin superconducting solenoid

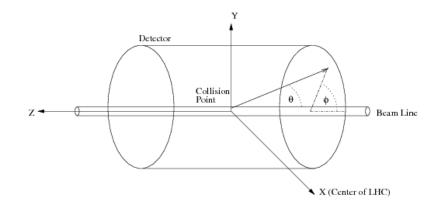

- \rightarrow to compute particles impulsion
- electromagnetic calorimeter
 - \rightarrow measure electromagnetic energy deposited by e^- and γ

• muon system

- \rightarrow designed to identify and reconstruct muons
- trigger system
 - \rightarrow choose either to keep or not events

• hadronic calorimeters

- \rightarrow measure hadronic energy deposited by hadronic system
- Detector surrounded by Magnetic



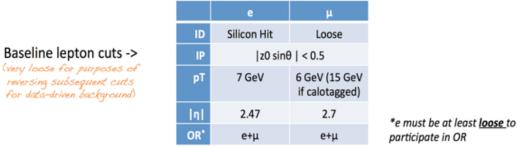
Coordinate System: Centered around the interaction point (ip)

- Cartesian system
 - \rightarrow x-axis pointing from the ip to the center of the LHC ring
 - \rightarrow y-axis pointing upward
 - \rightarrow z-axis defined by the beam direction
- Most commonly used angular coordinates
 - $\rightarrow \phi$ (azimuthal angle) measured around the beam axis
 - $\rightarrow \theta$ (polar angle) from the beam axis
 - $\rightarrow y \text{ (rapidity)} \\ = \ln[(E + p_z)/(E p_z)]$
 - $\rightarrow \eta \text{ (pseudo-rapidity)}$ $= -\ln \tan(\theta/2)$

• We define

- \rightarrow All transverse physics observables in the (x; y) plane
- $\begin{array}{l} \longrightarrow \quad \mbox{A commonly used distance in the } (\eta;\phi) \mbox{ plane} \\ \Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \end{array}$

Signal and background simulation


Signal

- $H \to Z_d Z_d \to 4l$ Generated by:
 - $M_{AD}G_{RAPH5}[1]$ $\rightarrow for ggF_{mechanism for}$
 - Higgs boson • Pythia[2] and
 - Рнотоs[3]
 - \rightarrow for showering, hadronisation and initial state radiation (ISR)
 - Hidden Abelian Higgs Model (HAHM)
 - \rightarrow as a benchmark signal model

Background

- $ZZ^* \to 4l$ (irreducible one)
 - PowHeg[4] and Pythia8[2] $\rightarrow \text{ for } q\bar{q} \rightarrow ZZ^* \text{ and } gg2ZZ$
 - Jimmy[5] $\rightarrow qq \rightarrow ZZ^*$
- WZ,ZZ dibosons processes
 - Sherpa [6]
- J/ψ and Υ
 - Pythia8B[2]
- Z+jets
 - AlpgenB[7]
- $t\bar{t}$
 - MC@NLO[8]

Reconstruction, Identification and Selection

Selection

- 1. Form all quadruplets satisfying: " *Quadruplet-level cuts*"
 - 2 x Same Flavour Opposite Sign pairs (q₁₂=q₃₄=0)
 - $p_T^1 > 20 \text{GeV}$, $p_T^2 > 15 \text{ GeV}$, $p_T^3 > 10 \text{ GeV}$
- 45G2

HSG2

- Trigger matched (see backup for list of triggers)
- Electrons in leading¹ pair ≥ LooseLH
- Number of CaloTagged or Standalone muons < 2
- ΔR < 0.1 same flavour, 0.2 opposite flavour
- Pick "best" quadruplet " quadruplet Ranking 2.
 - minimum $|m_{12} m_{34}|$ (1. Pair ranking def.: $|m_{12} m_z| < |m_{34} m_z|$)
- 3. Apply further cuts "Event-level Cuts"

c.f. HSG2: lexographic in |m₁₂-m₇|, |m₃₄-m₇| SMZZ: minimum $|m_{12}-m_7| + |m_{34}-m_7|$

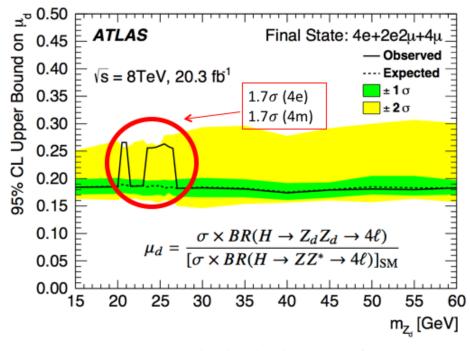
Reconstruction, Identification and Selection

- Reject the event if selected quadruplet fails any of these cuts
 - Electron Quality ≥ Loose LH
 - All leptons FixedCutLoose isolated
 - Electron (muon) d0 significance < 5 (3)
 - H Window: 115 < m₄₁ < 130 GeV
 - Quarkonia Veto: $|m_{xy} 3 \text{ GeV}| > 1 \text{ GeV}$, $|m_{xy} 10 \text{GeV}| > 1 \text{ GeV}$ (xy = 12, 34, 14, 23)

Same as HSG2

Z Veto: m₁₂ < 64 GeV, m₃₄ < 64 GeV, m₁₄ < 75 GeV, m₂₃ < 75 GeV

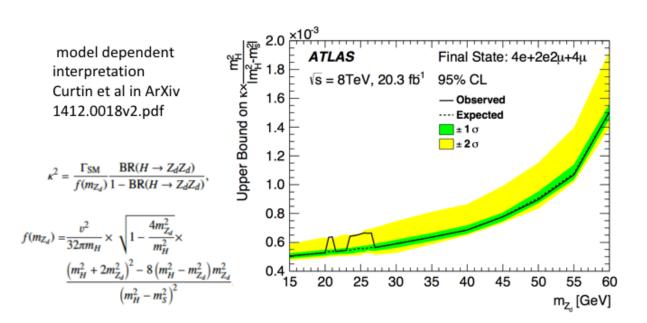
Optimized Z Veto cuts from dedicated study


Events passing all these cuts define the loose signal region (LooseSR)

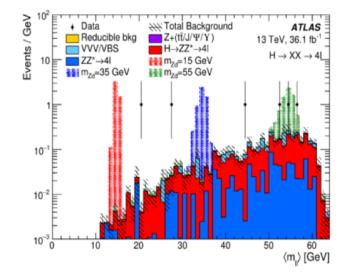
Signal Monte Carlo Cutflow

• Cutflow for $M_{Z_d} = 25$ GeV signal sample. Each channel is determined at truth level. The very last row shows the yield and significance in the Tight SR if all cuts had been placed at quadruplet level.

Cut	4 <i>e</i> channel	$2e2\mu$ channel	4μ channel	All	S/\sqrt{B}
No Cut	27.0 (100.0%)	60.8 (100.0%)	33.7 (100.0%)	121.6 (100.0%)	0.1
Trigger+PV	26.1 (96.7%)	58.0 (95.3%)	32.9 (97.3%)	116.9 (96.2%)	0.1
SFOS	19.8 (73.2%)	44.6 (73.4%)	26.2 (77.5%)	90.6 (74.5%)	0.1
OR	19.8 (73.2%)	44.6 (73.4%)	26.2 (77.5%)	90.6 (74.5%)	0.1
Kinematic	19.2 (71.1%)	43.5 (71.5%)	25.0 (74.2%)	87.7 (72.1%)	0.1
Trigger Matched	19.2 (71.1%)	43.5 (71.4%)	25.0 (74.2%)	87.7 (72.1%)	0.1
Delta R	19.2 (71.1%)	43.4 (71.3%)	25.0 (74.1%)	87.6 (72.0%)	0.1
Muon Quality	19.2 (71.1%)	43.4 (71.3%)	25.0 (74.0%)	87.6 (72.0%)	0.1
CBC Isolation	14.8 (54.8%)	35.5 (58.4%)	21.3 (63.0%)	71.6 (58.9%)	0.9
Electron ID	11.6 (42.9%)	31.2 (51.4%)	21.3 (63.0%)	64.1 (52.7%)	1.4
Impact Parameter	11.5 (42.5%)	30.9 (50.8%)	20.9 (62.1%)	63.3 (52.1%)	1.5
Quarkonia Veto	11.5 (42.5%)	30.9 (50.7%)	20.9 (61.9%)	63.2 (52.0%)	1.5
Low Mass Veto	11.5 (42.5%)	30.9 (50.7%)	20.9 (61.9%)	63.2 (52.0%)	1.6
H Window	10.7 (39.7%)	29.4 (48.3%)	20.2 (59.7%)	60.3 (49.6%)	6.0
Z Veto	7.3 (26.9%)	29.4 (48.3%)	13.0 (38.6%)	49.7 (40.9%)	14.2
Loose SR	7.3 (26.9%)	29.4 (48.3%)	13.0 (38.6%)	49.7 (40.9%)	14.9
Medium SR	7.1 (26.4%)	28.9 (47.5%)	12.9 (38.2%)	49.0 (40.3%)	24.2
All as quadruplet cuts	7.5 (27.8%)	29.7 (48.9%)	13.2 (39.2%)	50.5 (41.5%)	23.8

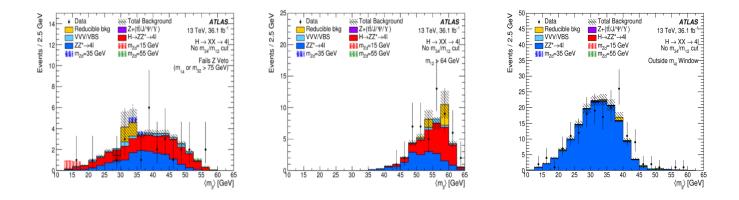

See paper http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.092001

Excess seen at local 25 level is not significant. Within Statistics, consistent with the SM


Interpretation in term of Higgs mixing

See paper http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.092001

- Factors that are expected to lead to an improvement in the Run 2 result
 - $\bullet~$ The Higgs production cross section in Run 2 (14 TeV) > Run 1 (8 TeV) 43.92 pb vs 19.3 pb
 - The Luminosity in Run 2 > Run 1 36.1 vs 20.3
 - Improvement in the Analysis code, various levels
 - Overall factor of 4 improvement expected in the limit.


MC-Data distribution

Process	Yield
$\overline{ZZ^* \to 4\ell}$	0.8 ± 0.1
$H \to ZZ^* \to 4\ell$	2.6 ± 0.3
VVV/VBS	0.51 ± 0.18
$Z + (t\bar{t}/J/\Psi) \to 4\ell$	0.004 ± 0.004
Reducible Background	Negligible
Total	3.9 ± 0.3
Data	6

- Distribution of $< m_{ll} >= \frac{1}{2}(m_{12} + m_{34})$
- Events selected in the $H \to XX \to 4l$ $(15 < m_X < 60 GeV)$ analysis

Irreducible background validation regions

- 3 Validations Regions:
 - \bowtie Events failing the Z Veto
 - Events where $m_{12} > 64 GeV$
 - Events outside of the $115 < m_{4l} < 130 GeV$ window
- These distributions validated the $H \to ZZ^* \to 4l$ and $ZZ^* \to 4l$ (Main backgrounds) process

Reducible backgrounds

• Data-driven estimate for processes with fake leptons

- WZ, $t\bar{t}$ and $Z + Jets < 4l + (\text{incorrect id for } l \dots \text{ eg jet faking } l)$
- $\bullet \quad \mathbf{MC} \ \mathbf{estimation} \ \rightarrow \ \mathbf{shows} \ \mathbf{very} \ \mathbf{low} \ \mathbf{contribution}$
- Data Driven cross check (ABCD Method)
 - Inverting isolation, impact parameter, or ID requirements on the leptons
 - Define a control region rich in misidentified leptons.
 - Transfer factors are measured in orthogonal control regions, also rich in misidentified leptons
 - Extrapolate from the events measured in the inverted cut control region into the signal region
 - The data-driven method < 0.1 events

- Run 2 Analysis in Open Review
- Extension to Run 1 with higher stats
- Improved analysis procedure.
 - $\rightarrow\,$ Soon to be published
- Research on High scalar particle is on going...

In the case of a signal, we will determine the significance, and in the case of exclusion, we will set limits. Presented here are the relative uncertainties on the high-mass fiducial efficiency for three mass points. All uncertainties were estimated using the ZdZd signal samples

High-mass Selection	$m_X = 15 \text{ GeV}$			$m_X = 35 \text{ GeV}$			$m_X = 55 \text{ GeV}$		
	4 <i>e</i>	$2e2\mu$	4μ	4 <i>e</i>	$2e2\mu$	4μ	4 <i>e</i>	$2e2\mu$	4μ
STAT	±3.5	±1.7	±2.9	±3.3	±1.8	+2.7 -2.6	±2.9	±1.7	±2.3
EL_EFF_ID_TOTAL	+7.6	±3.7		+8.3	±4.1		+7.8	$^{+3.9}_{-3.8}$	
EL_EFF_ISO_TOTAL	-7.3 +1.3 -1.2	±0.7		±1.4	±0.7		±1.1	±0.6	
EL_EFF_RECO_TOTAL	±3.1	$^{+1.6}_{-1.5}$		+3.4 -3.3	±1.7		+3.1 -3.0	±1.5	
MUON_EFF_STAT		±0.4	±0.7		±0.4	±0.7		±0.4	±0.8
MUON_EFF_STAT_LOWPT		±0.1	±0.2		±0.1	±0.2		±0.1	±0.2
MUON_EFF_SYS		±1.1	$^{+2.4}_{-2.3}$		±1.1	+2.3 -2.2		±1.2	± 2.4
MUON_EFF_SYS_LOWPT		±0.2	±0.3		±0.2	±0.3		± 0.1	±0.2
MUON_ISO_STAT		±0.2	±0.4		±0.3	±0.5		±0.2	±0.4
MUON_ISO_SYS		±0.6	±1.1		±0.6	±1.1		±0.5	±1.1
MUON_TTVA_STAT		±0.5	±0.9		±0.5	±0.9		±0.4	$^{+0.9}_{-0.8}$
MUON_TTVA_SYS		± 0.8	±1.2		±0.8	±1.4		±0.5	± 1.1
PRW_DATASF	+2.5	+2.5 -2.8	$^{+1.6}_{-1.1}$	+0.8 -1.2	$^{+1.6}_{-1.3}$	$^{+0.8}_{-1.4}$	+3.0 -2.4	+1.8 -2.0	$^{+1.3}_{-1.0}$
EG_RESOLUTION_ALL	$^{-3.0}_{+0.6}$	$^{-2.8}_{+0.2}$ $^{-0.1}$		$^{-1.2}_{+0.0}$			-2.4 +0.5 -0.6	$^{-2.0}_{+0.0}$	
EG_SCALE_ALL	$^{-0.4}_{+0.4}$ $^{-0.5}$	±0.1		$^{-0.4}_{+0.0}$ $^{-0.6}$	$^{+0.2}_{-0.3}$	+0.0 -0.1	$^{-0.6}_{+0.3}$ $^{-0.6}$	$^{-0.1}_{+0.1}$	
MUONS_ID		±0.1	+0.3		±0.1	$^{-0.1}_{+0.3}$		$^{-0.3}_{+0.0}$	+0.1
MUONS_MS		$^{+0.0}_{-0.1}$	$^{-0.0}_{+0.5}$			$^{-0.1}_{+0.3}$		$^{-0.2}_{+0.2}$	$^{-0.2}_{+0.0}$
MUONS_SCALE			$^{-0.2}_{+0.4}$ $^{-0.1}$		$^{+0.0}_{-0.1}$	$^{-0.1}_{+0.2}$ -0.0		$^{-0.1}_{+0.0}$ $^{-0.1}$	$^{-0.2}_{+0.0}$ $^{-0.1}$
MUONS_SAGITTA_RESBIAS									
MUONS_SAGITTA_RHO									

trigger

HLT_e24_lhmedium_L1EM20VH HLT e60 lhmedium HLT_mu20_iloose_L1MU15 HLT mu40 HLT 2e12 Ihloose L12EM10VH HLT mu18 mu8noL1 HLT 2mu10 HLT e17 lhloose mu14 HLT e17 lhloose 2e9 lhloose HLT 3mu6 HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT mu50 HLT 2e17 lhvloose nod0 HLT mu22 mu8noL1 14 HLT e17 lhloose nod0 mu14 15 HLT e17 lhloose nod0 2e9 lhloose nod0 16 HLT mu20 mu8noL1 17 HLT 2mu14 18