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Research area - Elementary particle physics

 What are the fundamental 
constituents of nature?

 What physical laws 
describe them?

• quantum mechanics (early 
20th century) describes atoms

• at higher energies, particles can be 
created and destroyed;                              

     described by quantum field theory

•  study via scattering processes



Motivation

• novel ideas for evaluating them

• scattering amplitudes needed for collider physics

• important challenge: 
Feynman loop integrals

• systematic approach via differential equations

This talk:



Example Feynman integral
• Integral appearing in Higgs production

• One loop: only logarithm and dilogarithm needed
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- what functions will appear at higher loops?
- how to compute them in an efficient way?
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• Questions:



recent new developments

• canonical differential equations                
- simple basis of functions                           
- compute integrals systematically

• predict properties of answer from rational 
loop integrand                                         
- ‘leading singularities’

• special functions:                                      
- better understanding of multiple 
polylogarithms (class of iterated integrals)                                                 
- ‘symbols’ describing main properties



toy example differential equations
• basis functions:

- all singularities manifest
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• differential equations
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- iterative solution defines 
special functions:
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-     keeps track of number of integrations✏



Feynman integrals from canonical 
differential equations [JMH, PRL 110 (2013) 25]

• defines class of special functions

D = 4� 2✏Example: one dimensionless variable     ;              x

• elegant description: Feynman integrals specified by:
      (1) set of ‘letters’ (set of singularities      )
      (2) set of constant matrices 
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• choose canonical basis (guided by integrand properties)
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Example: one-loop four-point integral

• Generalization to two and the loops:     
same eqs., only bigger matrices!

• Solution: expand to any order in     :✏ f =
P

k�0 ✏
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• differential equations x = t/s

• make singularities manifest 
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• asymptotic behavior governed by matrices a, b
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• choose basis according to [JMH, PRL 110 (2013) 25]



Multi-variable case and the alphabet
• Natural generalization to multi-variable case
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constant matrices letters (alphabet)

4-particle on-shell ↵ = {x, 1 + x}

two-variable example (from 
1-loop Bhabha scattering):

↵ = {x , 1± x , y , 1± y , x+ y , 1 + xy}

• Matrices and letters determine solution

• Immediate to solve in terms of iterated integrals

• Examples of alphabets:



Recent application:                         
five-particle scattering at two loops

sij = (pi + pj)
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Figure 1: The integration contour entering the definition (??) of the cusped
Wilson loop. {cusp-fig}

1

• five independent variables

{s12 , s23 , s34 , s45 , s51}~x =

• 61 planar master integrals
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• alphabet of 26 letters

• first two-loop five-particle scattering amplitude in QCD
ingredient to three-jet production at NNLO



Conclusion

• new approach for computing Feynman integrals: 
canonical differential equations

• define novel classes of special functions

• allows to describe analytically the functions 
needed for multi-jet processes 

alphabet of iterated integrals

‘symbol’, identities between polylogarithms, …

H+jets, V+jets, …


