

The European Spallation Source as a new tools for discovery

Christine Darve

African Conference of Fundamental Physics and Applications https://www.africanschoolofphysics.org/

June 28–July 4, 2018 at Namibian University of Science and Technology (NUST), Windhoek Namibia

Outline

- Objective of the ESS facility
- Description and status of the ESS
 - Instrument
 - Target
 - Accelerator
 - Integrated Control System

ESS : Science for Society

Fields of interest

Wave Magnetic moment Particle Neutral Penetrates Earth's Atmosphere? Neutron Gamma ray Radiation Type Radio Microwave Infrared Ultraviolet X-ray 10^{-8} 10-10 10^{-12} 10^{-2} 10^{-5} 0.5×10^{-6} Wavelength (m) 10^{3} Approximate Scale X of Wavelength Butterflies Needle Point Protozoans Molecules Atomic Nuclei Humans Atoms ⁱⁿding the Frequency (Hz) Science **10**¹⁵ 10¹² 10⁸ 10^{16} 10¹⁸ 10²⁰ 10 Temperature of objects at which health this radiation is the sustainability most intense 1K 100 K 10.000 K 10.000.000 K wavelength emitted -272°C -173 °C 9.727 °C ~10.000.000 °C technology heritage A wide range of length and timescales

Discovery

- High sensitivity and selectivity
- Deep penetration
- A probe of fundamental properties
- A precise tool
- An ideal probe for magnetism

Multi-science with neutrons

EUROPEAN SPALLATION SOURCE

 Neutrons can provide unique and information on almost all materials

Information on both structure and dynamics simulaneously.
"Where are the atoms and what are they doing?"

- 6000 primary users in Europe today and 6000 secondary users

- Science with neutrons is limited by the intensity of today's sources

Complementarity between X-rays & Neutrons

Neutron scattering lengths for different atom types found in biological materials:

Neutrons reveal how drugs interact with disease targets

The enzyme carbonic anhydrase transports CO_2 and regulates blood acidity. It is a major player in some cancers, glaucoma, obesity and high blood pressure

Neutron crystallography pinpoints protons and waters in the active site, showing how the drug Acetazolamide binds

Plant antimicrobial & antifungal proteins

EUROPEAN SPALLATION SOURCE

α-purothionins

Tan spot (Pyrenophora tritici-repentis)

Glumbe Blotch (Stagonospora nodorum)

Common Smudge (Cochliobolus sativus) Stripe blight (Pseudomonas syringie)

Neutron reflectometry used to determine how plant defence proteins from common wheat interact with cell membranes.

Clifton et al. Phys. Chem. Chem. Phys., 2012, 14, 13569-13579

Scientific challenges

EUROPEAN SPALLATION SOURCE

Solid State Physics

Dynamics of superlattices, wires and dots, molecular magnets, quantum phase transitions

Liquids and Glasses

Solvent structures, influence of molecular structures on protein folding

Fundamental Physics

Left and right handedness of the universe, neutron decay, ultracold neutrons

Soft Condensed Matter

Time resolution, molecular rheology, structures and dynamics

Biology and Biotechnology

Hydrogen and water , membranes, biosensors, functions

Materials Science and Engineering

Real time investigations with realistic dimensions under real conditions

Chemical Structure, Kinetics and Dynamics

Thin films, pharmaceuticals, supramolecules - structures and functionality

Earth and Environmental Science, Cultural Heritage

Extreme temperatures and pressures simulating the mantle

The visions

- **Room Temperature Super Conductors**
- Sterile neutrinos
- Hydrogen storage substrate •
- Neutron electric dipole moment ٠
- Efficient membrane for fuel cells ٠
- Flexible and highly efficient solar cells ٠
- Carbone nano-tubes for controlled drug release
- Self healing materials smart materials •
- Spin-state as a storage of data (10²³ gain in capacity) ٠
- CO₂ sequestration
- Graphene ?!

EUROPEAN SPALLATION

BrightnESS survey

Fig 3.14 Europe: Horizon 2020 topics and challenges expressed as a percentage of research, averaged

EUROPEAN SPALLATION SOURCE

Fig 3.15 Europe: Science fields per method expressed as a percentage of experiments

High time average and peak flux

ESS Vision: Build and operate the world's most powerful neutron source

EUROPEAN SPALLATION SOURCE

Basic design principle

High Power Linear Accelerator:

- Energy: 2 GeV
- Rep. Rate: 14 Hz Current: 62.5 mA

Target Station: He-gas cooled rotating W-target (5MW average power) 42 beam ports

> 16 Instruments in Construction budget

Committed to deliver 22 instruments by 2028

Peak flux ~30-100 brighter than the ILL

Total cost: 1843 MEuros 2013

Ion Source

ESS employees (as of March 2018)

ESS in-kind partners make ESS possible...

EUROPEAN SPALLATION SOURCE

Aarhus University Atomki - Institute for Nuclear Research **Bergen University CEA Saclay, Paris Centre for Energy Research, Budapest** Centre for Nuclear Research, Poland, (NCB) CNR, Rome **CNRS Orsay, Paris Cockcroft Institute, Daresbury Flettra – Sincrotrone Trieste ESS Bilbao** Forschungszentrum Jülich Helmholtz-Zentrum Geesthacht Huddersfield University **IFJ PAN, Krakow INFN**, Catania **INFN**, Legnaro **INFN**, Milan Institute for Energy **Research (IFE) Rutherford-Appleton** Laboratory, Oxford(ISIS)

Kopenhagen University Laboratoire Léon Brilouin (CEA – **CNRS – LLB)** Lund University **Nuclear Physics Institute of the** ASCR **Oslo University Paul Scherrer Institute (PSI)** Polska Grupa Energetyczna - PGE **Roskilde University Tallinn Technical University Technical University of Denmark Technical University Munich Science and Technology Facilities** Council **UKAEA Culham University of Tartu Uppsala University** WIGNER Research Centre for **Physics** Wroclaw University of Technology Warsaw University of Technology **Zurich University of Applied** Sciences (ZHAW)

Construction plan

EUROPEAN SPALLATION SOURCE

2025 ESS Construction Phase Complete

2014 Construction Starts on Green Field Site

2009 Decision to Site ESS in Lund

European Design of ESS

Completed

2003

2012 ESS Design Update Phase Complete 2023 ESS Starts User Program

2022 Machine Ready for 1st Beam on Target

Heat recovery (2011 figures)

Outline

- Objective of the ESS facility
- Description and status of the ESS
 - Instrument
 - Target
 - Accelerator
 - Integrated Control System

Current Status

EUROPEAN SPALLATION SOURCE

← From September 2014, green field

To June 2018, concrete blocks →

Instrument Suite

Science Drivers for the Reference Instrument Suite

Multi-Purpose Imaging ODIN Structures **General-Purpose SANS** SKADI **Broadband SANS** LOKI Large-Scale Surface Scattering **Horizontal Reflectometer FREIA** Vertical Reflectometer **ESTIA Thermal Powder Diffractometer HEIMDAL Bispectral Powder** Diffractometer DREAM Monochromatic Powder Diffraction Diffractometer **Materials Science Diffractometer BEER**

Single-Crystal Magnetism Diffractometer MAGICS

Macromolecular Diffractometer NMX

🔊 🗞 C- 🖍 🥙
🎍 🔏 🤣 💈
A 200
🔊 🍪 🥉
🧀 🗞 🍐
🦾 🎍 💈 🌤
6 1 26
🥝 🎍 💈 🥕
🕹 💈 🧬
2
💈 🦾
🕼 🕹
B 6-

Spectroscopy	Cold Direct Geometry Spectrometer C-SPEC	赵 🍐 🎸
	Wide Bandwidth Direct Geom. Spectrometer VOR	🔊 论 🧯 🎸
	Bispectral Direct Geometry Spectrometer TREX	🧭 🤷 💈
	Cold Crystal-Analyser Spectrometer BIFROST	🧭 🍐 💈 🥕
	Vibrational Spectrometer VESPA	🧭 🎍 💈
	Backscattering Spectrometer MIRACLES	🔊 🍲 🍐
	High-Resolution Spin-Echo	🔊 🤡 🏅
	Wide-Angle Spin-Echo	🔊 🗞 🎸 💈
	Fundamental & Particle Physics	2000 X
X	life sciences	magnetism & superconductivity
	soft condensed matter	engineering & geo-sciences

chemistry of materials

energy research

EUROPEAN SPALLATION SOURCE

Tentative Instrument Ramp-up

based on Instrument Construction Working Schedule V3.4, 15/9/2017

Construction Project

Hot Commissioning

User Programme

Outline

- Objective of the ESS facility
- Description and status of the ESS
 - Instrument
 - Target
 - Accelerator
 - Integrated Control System

ESS Target and Target building

High bay **Target Building** っ **Utilities and cooling plant** 130 m **Remote handling systems** 37 Transport hall MIL Target Utilities block Active cells monolith Beam expander hall **Target Monolith** ENTRANCE Rotating solid tungsten target (11 t, 23.3 rpm) Moderators ($LH_2 - 17$ K and $H_2O - 300$ K) Helium gas cooling of target (11 bar, 3 Kg/s) **Target Safety System Diagnostics and instrumentation**

Key features of the ESS Target Station

MIL

Active cells

Beam expander hall

EUROPEAN SPALLATION SOURCE

37

Utilities and cooling plant

- Helium cooling of target wheel
- Water cooling of moderators, plugs and shielding
- Intermediate water loops between primary circuits and conventional facility utilities
 - Helium cryoplant for refrigeration of cold moderator system
 - Nuclear grade HVAC system

130 m

Utilities block

High bay

Target

monolith

Remote handling systems

 Large active cells for safe storage and processing of spent radioactive target components

Shielded casks for transfer of spent components from monolith to active cells

Transport hall

Key features of the ESS Target Station

Moderators

- Provisional locations of moderators above and beneath the target wheel, i.e. monolith centre
- 1st MR plug exploits the upper space, offering:
 - \checkmark Cold, 30 mm high, liquid H₂ moderators, 17 K
 - ✓ Thermal, 30 mm high, H₂O moderator, 300 K

Diagnostics and instrumentation

- Controlled and integrated commissioning and operation of the accelerator and target
- Fluorescent coating of PBW and target front face
- Optical paths, grid profile monitor, aperture monitor
- Wheel monitoring including position, temperature, vibration, as well as internal structure

The Target disk has 36 sectors of tungsten-filled cassettes

EUROPEAN SPALLATION SOURCE

- the proton beam direction is 45 cm
- The range of a 2-GeV proton in tungsten is 74 cm
- Brick dimensions: 10 W x 30 D x 80 H mm³
- 190 bricks per sector, 6840 bricks in total
- Helium flows
 - radially outward above and below the cassette,
 - reverses direction at the wheel rim,
 - and returns through the tungsten

Tungsten bricks

Progress on Target and moderators

Outline

- Objective of the ESS facility
- Description and status of the ESS
 - Instrument
 - Target
 - Accelerator
 - Integrated Control System

Linear Accelerator layout

The ESS linac will be the most powerful proton linac ever built:

- Average beam power of up to 5 MW (ultimate)
- Peak beam power of up to 125 MW (ultimate)
- Acceleration up to 2 GeV (ultimate)
- Peak proton beam current of 62.5 mA
- Pulse length of 2.86 ms at a rate of 14 Hz (4% duty factor)

Constraints:

- Low losses
- Minimimum energy use & energy recovery
- Flexibility for mitigation or upgrade

More information @ https://confluence.esss.lu.se/display/CRYOM

96% of acceleration will be provided by superconducting cavities supplied by dedicated high power RF sources (one per cavity):

- Construction scope: 1.3 GeV with 11 powered High β cryomodules (44 x 1.5 MW klystrons)
- Nominal scope: 2 GeV with 10 more powered High β cryomodules (+40 x 1.5 MW klystrons)

ESS Linac – A Collaborative project

ESS ACCSYS project organization

MEUR

EUROPEAN SPALLATION SOURCE

External WP \rightarrow Cooperation agreements - Prototypes to Kick-start the linac design and production !

In-kind equipment starts being installed in Lund [e.g ion source from INFN (+ CEA)]...

CEA IRFU RFQ :couplers conditioned at 1 MW

INFN Legnaro DTL

EUROPEAN SPALLATION SOURCE

Bead pulling and tuning on DTL Aluminum model (Tank #2 as mock-up) on going in Legnaro

DTL Tank section 4 -1 at the GSI plating Facility

Equipment construction is progressing at in-kind partners (e.g. CNRS IPNO)

EUROPEAN SPALLATION SOURCE

50 (min)

300 (max)

Spoke cavities and cryomodules (CNRS-Orsay)

The 3 prototype cavities largely exceeded specs.

Beam tube diameter [mm

P max [kW]

Prototypes are built/under construction by partners and provide lessons

Aarhus university RSM Pair

EUROPEAN SPALLATION SOURCE

Nominal field 106 Gauss Designed for 60% cont. Power average 30W. Air cooled!

ESS development of high power/ compact/ high efficiency modulator is successful

EUROPEAN SPALLATION

SOURCE

Cryogenic Systems are under commissioning

Outline

- Objective of the ESS facility
- Description and status of the ESS
 - Instrument
 - Target
 - Accelerator
 - Integrated Control System

ESS Control System network

In-kind contributions to ICS are materializing and installation has started

IFE control room contribution

Cabling on site

Oxygen Deficiency Hazard system

First steps of commissioning from the local control room

EUROPEAN SPALLATION SOURCE

 Recent achievements include controlling the pure Helium storage and parts of the ion source and LEBT from the local control

Summary

- The ESS facility is built by a collaboration of some 100 research institutes and universities around the word
- Manufacturing of all major accelerator systems have now been launched and first parts are now being installed
- First beam for science 2023
- Most future large scale project are likely to be IK projects and this is a very powerful model !

EUROPEAN SPALLATION SOURCE

EXTRA SLIDES

Beam Diagnostics: IPM prototype tests running on IPHI.

EUROPEAN SPALLATION SOURCE

The IPM team in Saclay.

The IPM test chamber

Measurement results for the proton beam at IPHI showing good performance and agreement with simulations.

Elettra In-kind Contributions

EUROPEAN SPALLATION SOURCE

- Magnets for the ESS linac (AIK2.1), Trilateral IKCA (Elettra, ESS, INFN)
- Power Converters for Magnets (AIK17.2), Trilateral IKCA (Elettra, ESS, INFN)
- Spoke RF Power Stations (AIK 17.7), Trilateral IKCA (Elettra, ESS, INFN)
- Beam Diagnostics Wire Scanner Acquisition System (AIK 7.4), Approved by Elettra Board of Directors

Delivery at ESS

Technical Support for Installation and Commissioning (UNDER DEFINITION)

HIGHLIGHTS (MORE IN THE POSTER SESSION): MAGNETS (AIK2.1)

- LWU Magnets (Q5,Q6,Q7 and C5, C6)
 - Contract assigned to Danfysik
 - CDR by end of April 2018
 - · First pre-series corrector magnets C5, C6: July-August 18
 - First pre-series corrector magnets Q5, Q6, Q7: September-October 18
- Magnets D1, Q8 and C8: bids received, under evaluation
- Dedicated magnetic Lab at Elettra: under completion

POWER CONVERTERS (AIK17.2)

- Power converters for dipole and quadrupole magnets: bids received, under evaluation
- Assembly of power converters for correctors (Elettra design): bids received, under evaluation
- Bulk&Aux DC/AC Power supplies with Step Diode: **DELIVERED TO ESS**

RF POWER STATIONS (AIK17.7)

- RF Power stations: bids received, under evaluation
- Tetrodes: offer received, under evaluation

WIRE SCANNER ACQUISTION SYSTEM (AIK 7.4)

- Evaluation test on Linac4 (analog FE, Back end and software) performed in autumn 2017
- CDR performed in March 18.

