

ECFA panel for instrumentation

Els Koffeman (Nikhef Amsterdam & UvA)

Mandate of the panel [2014]

- Help to create a coherence of the global R&D effort by encouraging synergy between different activities and advising funding agencies.
- Overview the European effort for detector R&D
 - Both items remain in suspense but the committee is willing to work on them, with conjunction with other players (concluding remarks)

Y.Karyotakis (chair) D.Eckstein (scientific secretary)

- E. Koffeman
- G. Mikenberg
- H.G. Moser
- T. Sumiyoshi
- C. Padilla
- A. White
- R. Brenner
- M. Diemoz

Previous panel was active until 2014.Panel focussed on LC activities and reviewed the following projects:

Calorimeters : High granularity electromagnetic and hadronic calorimeters: Si and Scintillator ECAL digital and analog Hcals.

Forward calorimeters :

FCAL and luminosity

Trackers :

LCTPC with various read-outs

Vertex Detectors :

DEPFET and CMOS technologies

PANEL 2017

- Chair Els Koffeman, KM3NeT technical coordinator, Professor
 University of Amsterdam on instrumentation in particle physics
- Scientific secretary is Doris Eckstein (DESY)
- Ex officio Arielle Catai, ICFA R&D panel chair

Laurent Serin

Senior physicist ar LAL Orsay Liquid Argon electromagnetic calorimeter

Phase2 upgrade

Granular Timing Detector, and

IN2P3/CNRS

for ATLAS

national contact

project of a High

Straessner ATLAS LAr Calorimeter Upgrade Co-Convener (2009-2016) and ATLAS LAr **Electronics Upgrade Co-Project** Leader (from 2017); Professor for Experimental Particle Physics at TU Dresden

Lucie Linssen

Project leader of CERN's

Linear Collider Detector

project, CLICdp

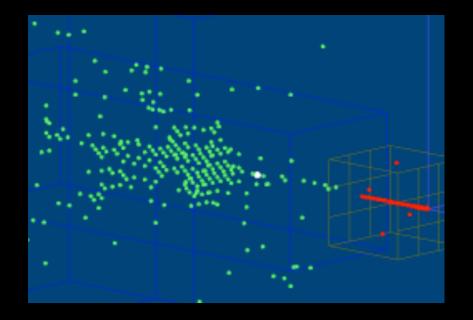
spokesperson,

participation in detector R&D towards a silicon

pixel tracker for CLIC.

Phill Allport ATLAS Upgrade Coordinator. **Director Birmingham Instrumentation** laboratory for Particle physics and Applications (BILPA).

Sylvia dalla Torre INFN senior physicst; fundamental research in hadron physics; gaseous and **RICH** detectors; RD51 (MPGD) co-spokesperson; for 7 years director of INFN-Sezione di Trieste


- REWARD YOUNG TALENT
- Continue to act as review panel
 - Attract (young) external reviewers
 - First plan is a request for the review of Calice
- Connect with existing review boards
- Explore new roles
 - Assist reviewing process of ATTRACT program in contact with Marcus Nordberg
 - Review R&D for Astroparticle Physics Experiments
 - National/regional R&D activity in Europe
- Initiate R&D discussion for EU strategy on particle physics

Calice Review

- Obtain the assessment of the board on different aspects of CALICE activities, get suggestions for future improvement:
 - The current role of CALICE in the HEP R&D environment, including assessment of the current extent and limitations of the scope of the collaborationactivities, which is focussed on, but not limited to linear collider applications
 - The organisation and operation of CALICE, including collaboration structure, goals, timescales and risks, and the representation to the outside, for example inconferences and publically available material
 - The quality and scope of CALICE results and publications, and the level atwhich the technical solutions followed are state-of-the art

Spokesperson Frank Simon Contactperson panel Lucie Linsen

We started ambitious with taxonomy

Technique	1.1 (hadron	1.2 (lepton	1.3 (lepton-	1.4 (fixed	Comment
	collider)	collider)	hadron)	target)	
1.a (Si) Vertexing (& Lumi/FP)	Rad-hard (pp) Low mass (AA) Data rate (pp)	Low mass Fine pitch Time stamp	Fine pitch Low mass	Fast R/O Fine pitch Radiation	Monolithic devices incorporate electronics. Time structure dictates on-detector R/O.
1.b Inner track (Si)	Area/cost Radiation (pp)	Low mass Area/Cost	Area/cost	Radiation	Can be few 10 ¹⁵ n _{eq} /cm² radiation levels
1.c Track gas (inlc muons)	Area/cost Hit rate, aging	Volume (TPC)	Area/cost Hit rate	Hit rate	Industrialisation of gas micro- pattern detectors
1.d Sci Fibre	Radiation incl photodetectors			Efficiency	Photodetector radiation hardness
1.e Scint Calo	Radiation Granularity	Granularity EM Resolution	Granularity EM Resolution	EM Resolution	Timing for ToF or pile-up mitigation
1.f Calo L-noble	Charge collection time	EM Resolution	EM Resolution	EM Resolution Speed	Rate capabilities
1.g HG-Calo	Area/cost Resolution	Area/cost	Area/cost EM Resolution	EM Resolution	Particle Flow Analysis (EM Resolution?)
1.h Calo homogenous	Radiation Granularity	EM Resolution Granularity	EM Resolution Granularity	EM Resolution Granularity	Timing for ToF or pile-up mitigation
1.i Fast Timing (Si, gas, scintillator)	Radiation, Speed, Rate Area/cost	Time stampArea/cost	Area/cost	Speed Sensitivity	Primary vertexing. Time of Flight for lower momenta PID
1.k Particle ID RICH	Volume Area/cost	Volume Area/cost	Volume Area/cost	Volume Area/cost	Efficiency for single photo-detection
1.o FE Electronics & Interconnect	Radiation Cost/channel # Power	Channel #, Power, fine-pitch	Cost/channel #, Power	Speed/ data volumes	Prototyping costs for deep-sub- micron engineering runs
1.p Data links (incl opto- electronics)	Radiation Cost/channel # Low mass	Channel # Low mass	Channel # Low mass	Speed/ data volumes	How to exploit commercial developments?
1.q Mech, cool, services	Low mass, reliable, stable	Low mass, reliable, stable	Low mass, reliable, stable	Low mass, reliable, stable	Large-scale magnet systems
1.r TDAQ + Computing	Cost, Speed Commercial Solutions	Cost Channel #	Cost, Speed Commercial Solutions	Speed/ data volumes	Is Moore's Law safe forever?

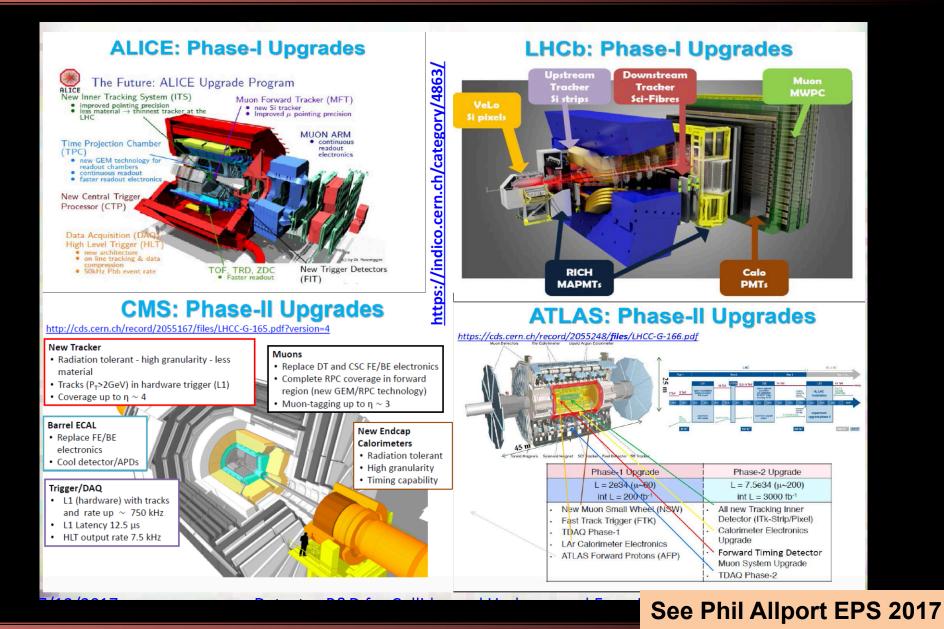
See Phil Allport EPS 2017

November 2017

R&D at CERN

 Significant part of R&D in our field is embedded in CERN experiments and a (limited) number of R&D programs

Soure CERN Greybook

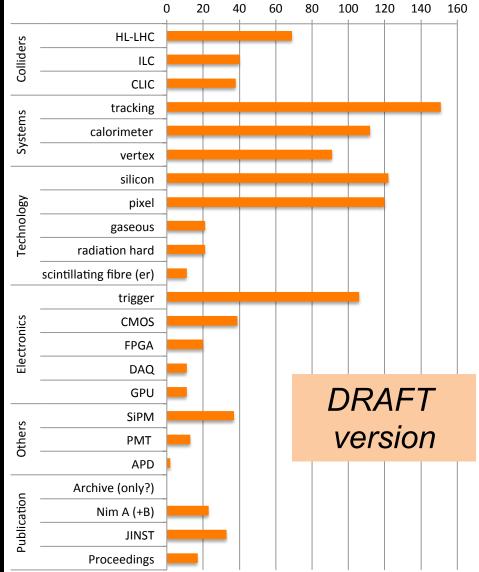

Name	Synonym	Title
RD-18	CRYSTAL CLEAR	R&D on scintillation materials for novel ionizing radiation detectors for High Energy Physics, medical imaging and industrial applications
RD42		Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC
RD50		Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders
RD51		Development of Micro-Pattern Gas Detectors Technologies
RD52		Dual-Readout Calorimetry for High-Quality Energy Measurements
RD53		Development of pixel readout integrated circuits for extreme rate and radiation
UA9	CRYSTAL	

RESEARCH PROGRAMME

LHC	
SPS	
PS	
AD	
ISOLDE Facility	
Irradiation Facility	
Neutrino Platform	
GRADE	
CTF3	
R&D	

R&D embedded in experiments

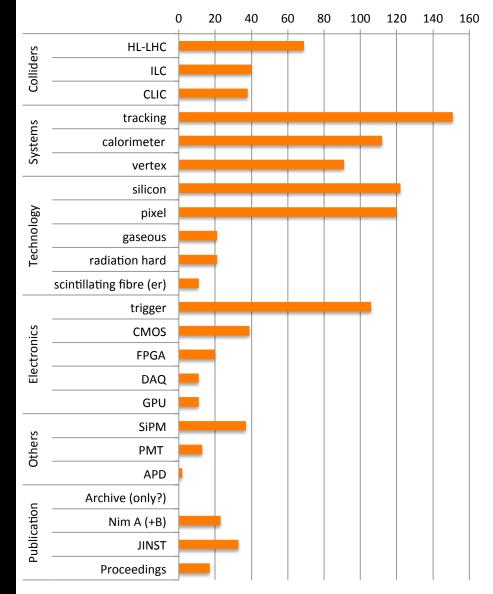
November 2017


R&D at CERN

• G	RADE		RESEARCH PROGRAMMELHCSPSPSADISOLDE FacilityIrradiation FacilityNeutrino PlatformGRADE	
Name	Synonym	Title	CTF3 R&D	Date of Approval
GR02	TT-PET	Thin Time-Of-Flight PET project	Rab	08-06-2016
GR03	AUGMENT	generic R&D and augmented reality techni	08-06-2016	
GR04	HEALTH	detectors for health and safety	08-06-2016	
GR1	SIMPLE	Silicon Photo Multipliers for Generic Detector R&D		09-12-2015

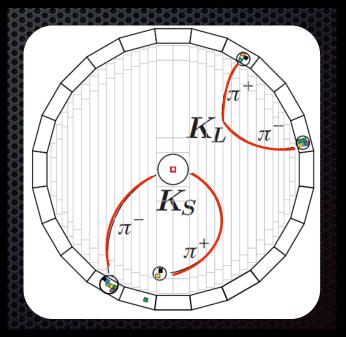
Make R&D shine (again)

- I performed a small analysis on what we published in 2017
- Few percent of total number of publications is on R&D
- DISCLAIMER
 - Some terms are not unique and no correlations are counted. Source is SPIRES database.
 - Publication distribution is given for the search term "silicon"

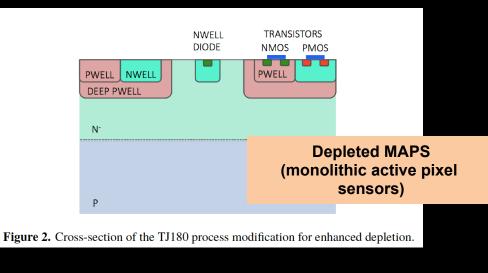


Make R&D shine (again)

- The number one topic of 2017.....
- " FAST" (>200 hits)


- Personal Concern
 - The impact factor of JINST and NIM are not so high

Tracking System
DC - He-Iso 90-10
3.7m x 4m Drift Chamber
Inner Tracker - 4 Cylindrical GEM detectors


 \oplus

Highlights

First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

H. Pernegger^a, R. Bates^c, C. Buttar^c, M. Dalla^b, J.W. van Hoorne^a, T. Kugathasan^a, D. Maneuski^c, L. Musa^a, P. Riedler^a, C. Riegel^a, C. Sbarra^b, D. Schaefer^a, E.J. Schioppa^a and W. Snoeys^a

- Hide full author list Published 7 June 2017 • © CERN 2017 Journal of Instrumentation, Volume 12, June 2017

Contributors

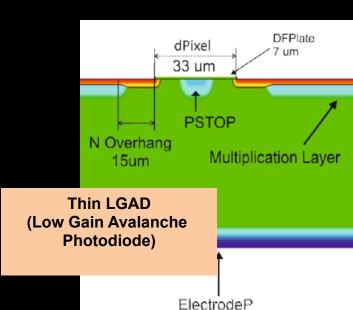
V. Fadeyev, P. Freeman, Z. Galloway, B. Gruey, H. Grabas, C. Labitan, Z. Liang, R. Losakul, Z. Luce, F. Martinez-Mckinney, H. F.-W. Sadrozinski, A. Seiden, E. Spencer, M. Wilder, N. Woods, A. Zatserklyaniy, Yuzhan Zhao SCIPP, Univ. of California Santa Cruz, CA 95064, USA

R. Arcidiacono, **B. Baldassarri**, N. Cartiglia, **F. Cenna, M. Ferrero**, A. Staiano, V. Sola Univ. of Torino and INFN, Torino, Italy

> G. Pellegrini, S. Hidalgo, **M. Baselga, M. Carulla, P. Fernandez-Martinez,** D. Flores, A. Merlos, D. Quirion Centro Nacional de Microelectrónica (CNM-CSIC), Barcelona, Spain

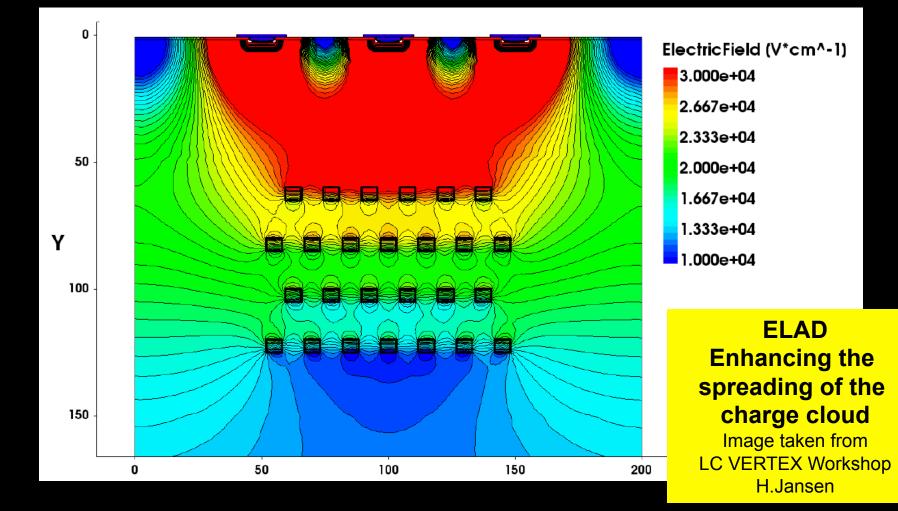
V. Cindro, G.Kramberger, I. Mandić, M. Mikuž, M. Zavrtanik Jožef Stefan Inst. and Dept. of Physics, University of Ljubljana, Ljubljana, Slovenia

> . M. Bomben, G. Calderini, G. Marchiori LPNHE, Paris, France


K. Yamamoto, S. Kamada, A. Ghassemi Hamamatsu Photonics (HPK), Hamamatsu, Japan

HGTD and LGAD R&D beam test crews

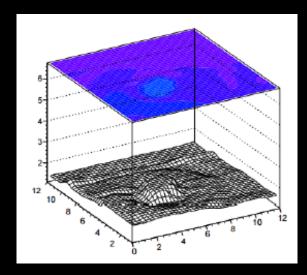
This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286.


Students in **bold**

Part of this work has been financed by the European Union's Horizon 2020 Research and Innovation funding program, under Grant Agreement no. 654168 (AIDA-2020) and Grant Agreement no. 659529 (ERC UFSD659529), and by the Italian Ministero degli Affari Esteri and INFN Gruppo V. This work was partially performed within the CFR NDSD collaboration.

Highlights Novel concept




November 2017

• PMT with SiPM inside

Full Characterization of the First 1 Inch Industrial Prototype of a New Concept Photodetector

images taken from High Energy Physics – Experiment (hep-ex) <u>arXiv:1705.00602</u> [physics.ins-det]

November 2017

The Tipsy detector, for example, is sensitive for individual soft photons (100–1000 eV), which are converted into photoelectrons in the photocathode and multiplied in the stack of transmission dynodes. The resulting electron avalanche is detected by the digital circuitry in the individual pixels of the CMOS chip

> A new vacuum electron multiplier, <u>NIM A, Volume 847</u>, 1 March 2017, Pages 148-161, Harry van der Graaf et al.

Looking forward to

- To start Calice new review
- Prepare for European Strategy
- Connect with ATTRACT
- Follow Novel Concepts

• Explore

- Publication strategy
- Review R&D in related field (discussion started with APPEC/ several neutrino experiments), Nupecc, GW?