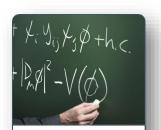


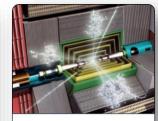
EASITrain, grant agreement no. 764879; ARIES, grant agreement 730871; and E-JADE, contract no. 645479

Commission for Research & Innovation photo: J. Wenninger

Future Circular Collider (FCC) Study


International FCC collaboration (CERN as host lab) to study:

• pp-collider (FCC-hh)


→ main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- **HE-LHC** with *FCC-hh* technology
- *p-e (FCC-he) option,* IP integration, e⁻ from ERL

Physics Cases

Experiments

Cost Estimates

FED FCC study: physics and performance targets

FCC-ee:

- Exploration of 10 to 100 TeV energy scale via couplings with precision measurements
- ~20-50 fold improved precision on many EW quantities (equiv. to factor 5-7 in mass) (m_Z, m_W, m_{top}, sin² θ_w^{eff}, R_b, α_{QED} (m_z) α_s (m_z m_W m_τ), Higgs and top quark couplings)
 > Machine design for highest possible luminosities at Z, WW, ZH and ttbar working points
 FCC-hh:
- Highest center of mass energy for direct production up to 20 30 TeV
- Huge production rates for single and multiple production of SM bosons (H,W,Z) and quarks
 Machine design for 100 TeV c.m. energy & integrated luminosity ~ 20ab⁻¹ within 25 years
 HE-LHC:
- Doubling LHC collision energy with FCC-hh 16 T magnet technology
- c.m. energy = 27 TeV \sim 14 TeV x 16 T/8.33T, target luminosity \geq 4 x HL-LHC
- > Machine design within constraints from LHC CE and based on HL-LHC and FCC technologies

FCC physics

- First FCC physics workshop at CERN in January 2017 (>200 participants)
- Second FCC physics workshop at CERN: 15-19 January 2018, CERN
- HL-LHC and HE-LHC physics workshop started October 2017 until end 2018

Physics at the FCC-hh

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

M. Mangano (ed.)

- Volume 1: SM processes (238 pages)
- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)

published as CERN yellow report CERN-2017-003-M

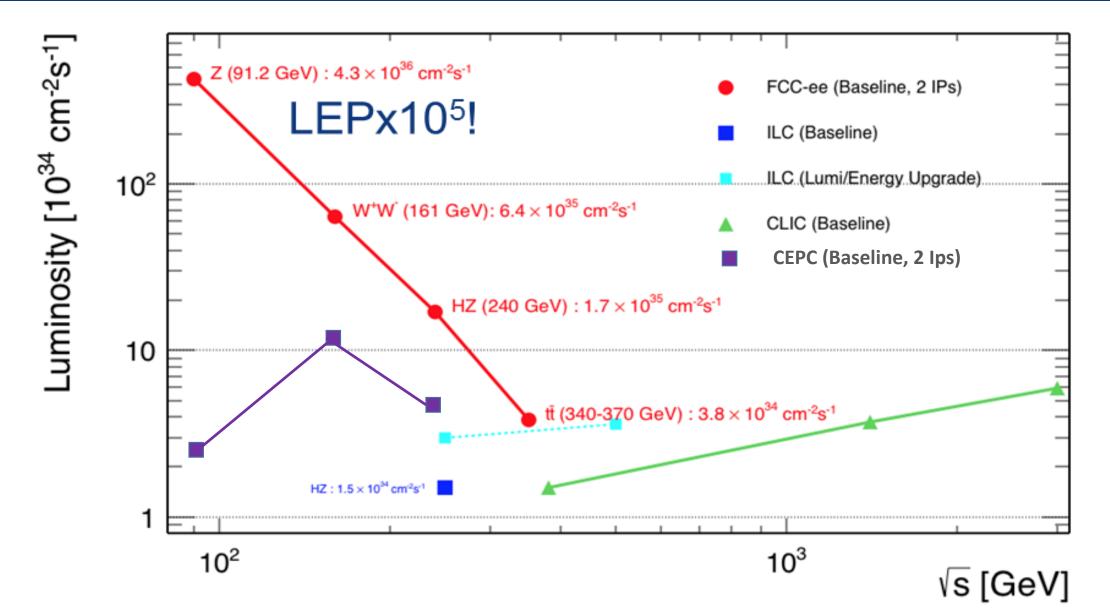
P. Janot et al.

Physics at FCC-ee

"First Look at the Physics Case of TLEP", JHEP 1401 (2014) 164,

https://link.springer.com/article/10.1007%2FJHEP01%2 82014%29164

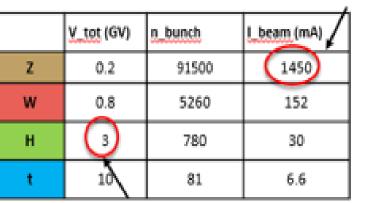
https://arxiv.org/abs/1308.6176



FCC-ee collider parameters

parameter	Z	WW	H (ZH)	t	tbar
beam energy [GeV]	45	80	120	175	182.5
beam current [mA]	1390	147	29	6.4	5.4
no. bunches/beam	16640	2000	393	48	39
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.7	2.8
SR energy loss / turn [GeV]	0.036	0.34	1.72	7.8	9.21
total RF voltage [GV]	0.1	0.44	2.0	9.5	10.9
long. damping time [turns]	1281	235	70	23	20
horizontal beta* [m]	0.15	0.2	0.3	1	1
vertical beta* [mm]	0.8	1	1	2	2
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.34	1.45
vert. geom. emittance [pm]	1.0	1.0	1.3	2.7	2.7
bunch length with SR / BS [mm]	3.5 / 12.1	3.3 / 7.6	3.1 / 4.9	2.5 / 3.3	2.5 / 3.2
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	>200	>30	>7	>1.5	>1.3
beam lifetime rad Bhabha / BS [min]	70 / >200	500 / 20	42 / 20	39 / 24	39 / 25

lepton collider luminosities

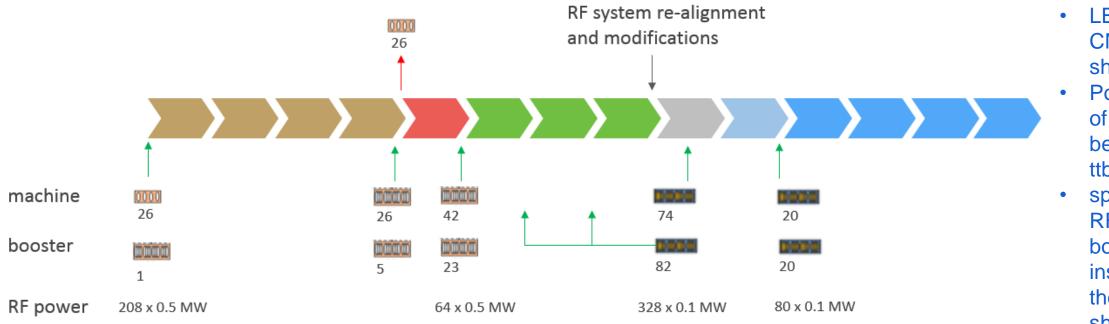

FCC-ee operation model

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]			
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4			
Z later	200	52 ab⁻¹/year					
W	30	7.8 ab ⁻¹ /year	10 ab ⁻¹	1			
Н	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3			
machine modification for RF installation & rearrangement: 1 year							
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1			
top later (365 GeV)	1.3	0.34 ab ⁻¹ /year	1.5 ab ⁻¹	4			

total program duration: 14 years - including machine modifications phase 1 (*Z*, *W*, *H*): 8 years, phase 2 (top): 6 years

FCC-ee RF staging scenario

"Ampere-class" machine



h ee he

"high gradient" machine

three sets of RF cavities to cover all options for FCC-ee & booster:

- installation sequence comparable to LEP (≈ 30 CM/shutdown)
- high intensity (Z, FCC-hh): 400 MHz mono-cell cav, ~1 MW source
- higher energy (W, H, t): 400 MHz four-cell cavities (4/cryomodule)
- ttbar machine complement: 800 MHz five-cell cavities (4/cryom.)

- LEP record: ~ 32 CM in one shutdown
 - Possibly 1 year of long shutdown between ZH and ttbar operation.
- spread 800 MHz RF power & booster installation over the preceding shutdowns

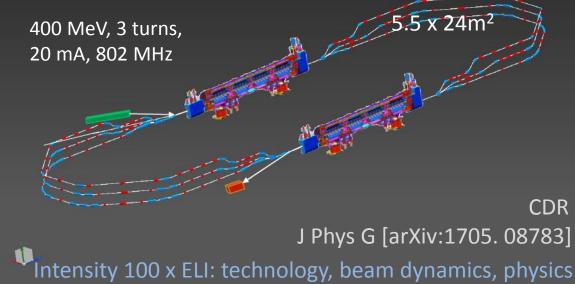
SRF cavity development & FCC-eh ERL

F. Marhauser et al

5-cell 800 MHz cavity, JLAB prototype for FCC-ee (top mode) & FCC-eh; also single-cell cavities for all FCC's

JLAB, October 25, 2017

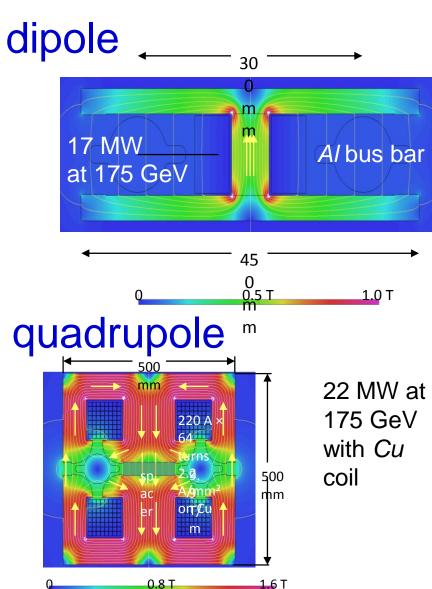
optimized for high current operation


M. Klein

FCC-eh: 60 GeV e⁻ from Energy Recovery Linac (ERL) PERLE@Orsay ERL test facility

FCC-he studies on H+BSM+SM physics; $Q^2 < 10 \text{ TeV}^2$, 1 ab⁻¹

work on detector, IR, LHeC reference, technology,...


BINP, CERN, Daresbury/Liverpool, Jlab, Orsay +..

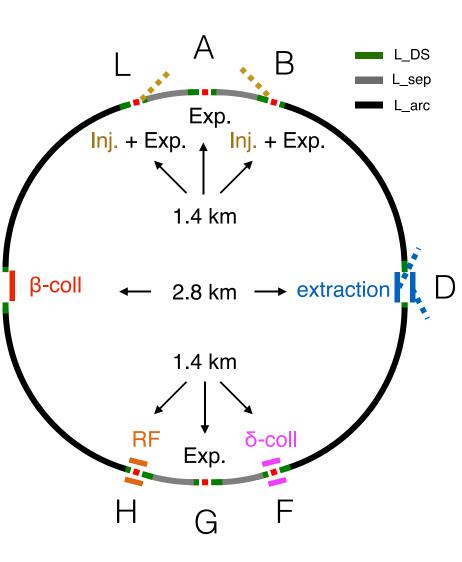
FCC-ee dual aperture main magnets

low-power low-cost designs - factor 2 power saving by dual aperture

construction of main dipole and quadrupole models (~1 m units)

magnetic measurements

ongoing


Hadron collider parameters (pp)

parameter	FCC-hh		HE-LHC	(HL) LHC	
collision energy cms [TeV]	100		27	14	
dipole field [T]	16		16	8.3	
circumference [km]	100		27	27	
beam current [A]	0.5		1.12	(1.12) 0.58	
bunch intensity [10 ¹¹]	1 (0.5)		2.2	(2.2) 1.15	
bunch spacing [ns]	25 (12.5)		25 (12.5)	25	
norm. emittance γε _{x,y} [μm]	2.2 (1.1)		2.5 (1.25)	(2.5) 3.75	
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55	
Iuminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	28	(5) 1	
peak #events / bunch Xing	170	1000 (500)	800 (400)	(135) 27	
stored energy / beam [GJ]	8.4		1.4	(0.7) 0.36	
SR power / beam [kW]	2400		100	(7.3) 3.6	
transv. emit. damping time [h]	1.1		3.6	25.8	
initial proton burn off time [h]	17.0	3.4	3.0	(15) 40	

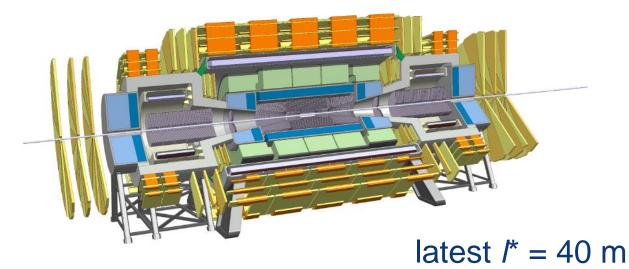
FCC-hh layout and optics

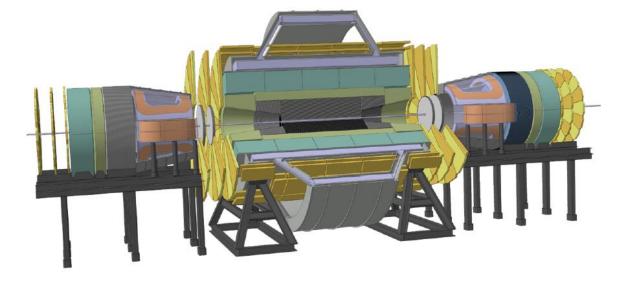
- Two high-luminosity experiments (A & G)
- Two other experiments combined with injection (L & B)
- Two collimation insertions
 - Betatron cleaning (J)
 - Momentum cleaning (F)
- Extraction insertion (D)
- Clean insertion with RF (H)
- Compatible with LHC or SPS as injector

Circumference 97.8 km

ာငirCol

- Injections upstream side of experiments
- Avoids mixing of extraction region and high-radiation collimation areas
- Beam dynamics studies confirm design goals
- Focus on optimization of collimation system and extraction system


FCC-hh detector – new reference design


6 T, 12 m bore solenoid, 10 Tm dipoles, shielding coil

- 65 GJ stored energy
- 28 m diameter
- >30 m shaft
- multi billion project

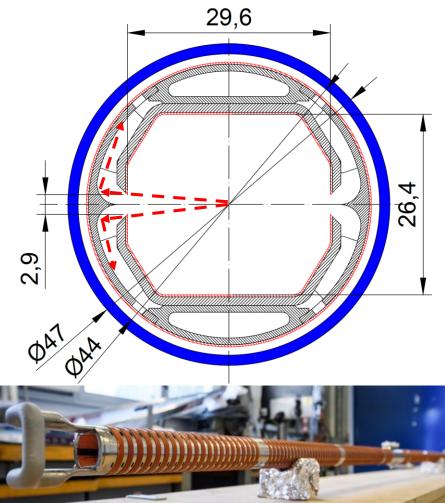
- 14 GJ stored energy
- rotational symmetry for tracking!
- 20 m diameter (~ ATLAS)
- 15 m shaft
- ~1 billion project

FCC-hh cryogenic beam vacuum system EuroCirCol

Synchrotron radiation (~ 30 W/m/beam (@16 T field) (cf. LHC <0.2W/m) ~ 5 MW total load in arcs

• Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW →100 MW cryoplant)

FCC-hh vs ANKA: SR spectra


ANKA e⁻ photon spectrum

= FCC – hh spectrum

10¹⁴

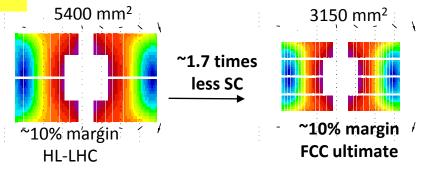
N 10¹² 10¹¹ 10¹⁰

• Provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.

FCC-hh beam-screen test set-up at ANKA/Germany: beam tests since June 2017, for prototype #1, confirming vacuum design simulations

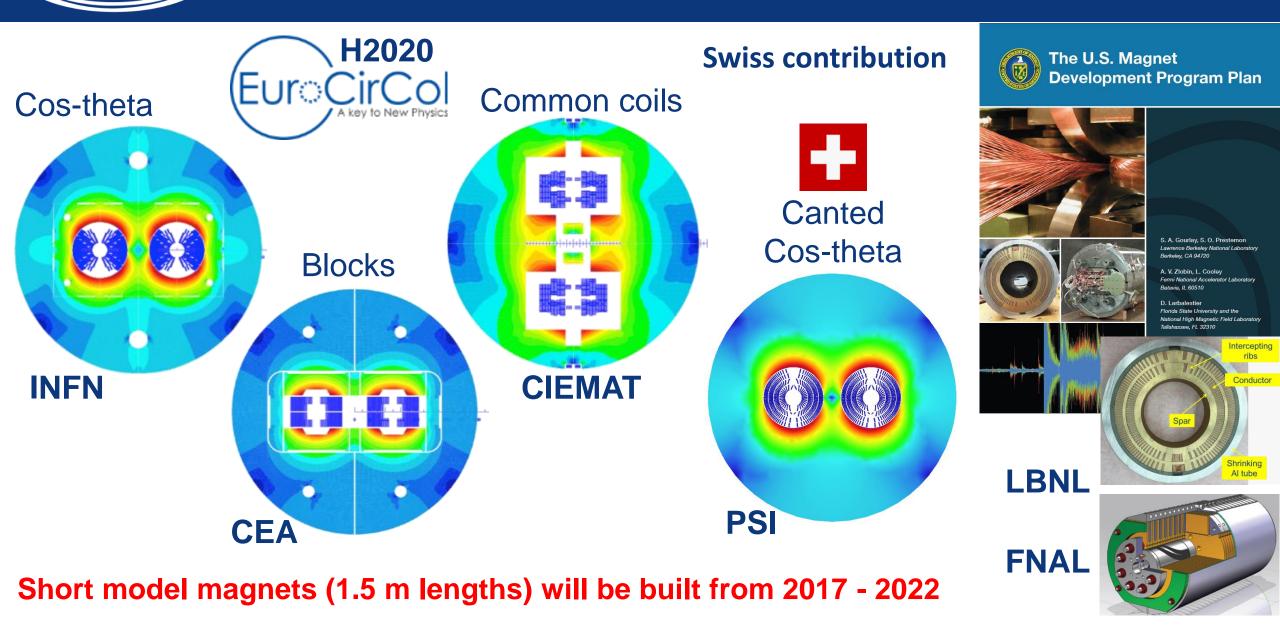
2.5 GeV ANKA/KIT

storage ring



Worldwide FCC Nb₃Sn program

Main development goals:


- J_c (16T, 4.2K) > 1500 A/mm² i.e. 50% increase wrt HL-LHC wire
- Potentials for large-scale production and cost reduction
- Procurement of state-of-the-art conductor:
 - Bruker-OST– European/US
- Conductor development with regional industry:
 - CERN/KEK Japanese contribution. Japanese industry (JASTEC, Furukawa, SH Copper) and laboratories (Tohoku Univ. and NIMS).
 - CERN/Bochvar High-technology Research Inst. Russian contribution. Russian industry (TVEL) and laboratories
 - CERN/KAT Korean industrial contribution
- Characterization of conductor & research with universities:
 - > Technical Univ. Vienna, Geneva University, University of Twente
 - > Applied Superconductivity Centre at Florida State University

Impact on coil section and conductor mass

16 T dipole design activities and options

hh ee he

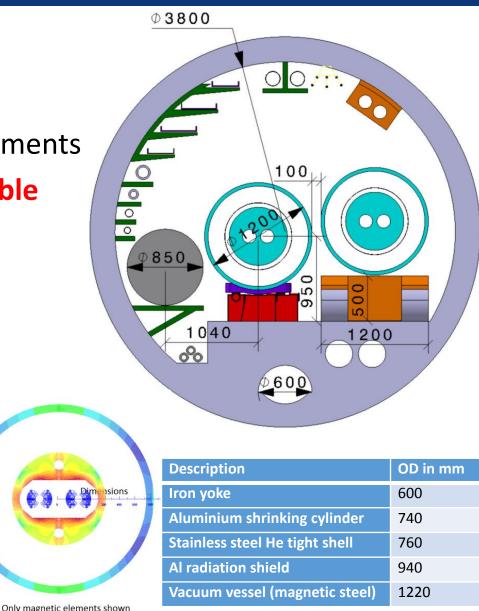
HE-LHC integration aspects

4.287

1.514 1.262 1.010 0.757 0.505

0.253

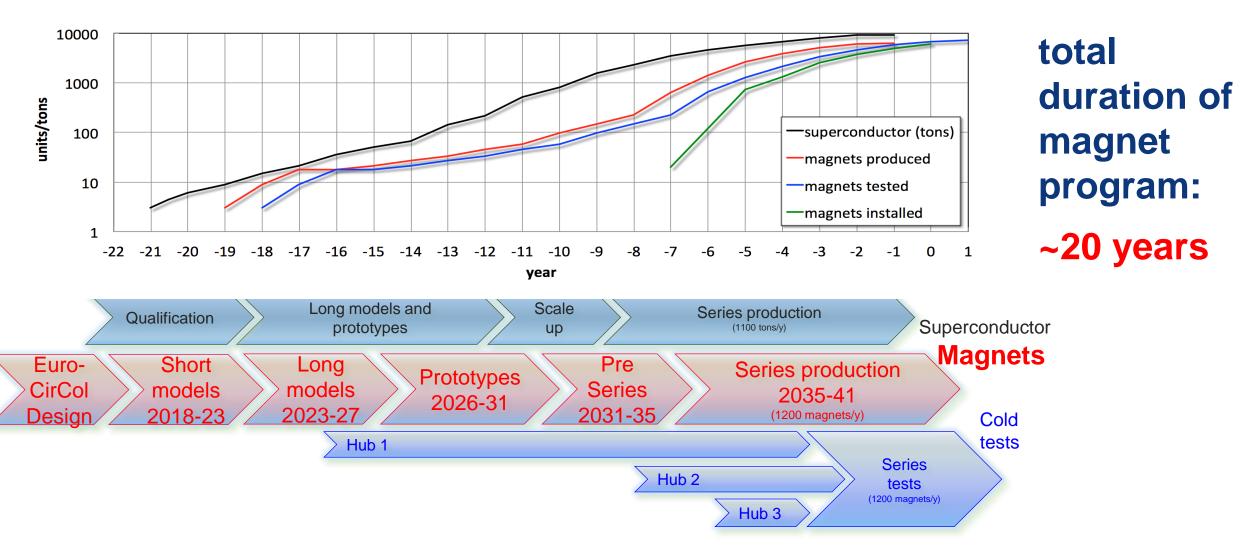
OXIE 10.2


Working hypothesis for HE LHC design:

No major CE modifications on tunnel and caverns

- Similar geometry and layout as LHC machine and experiments
- Maximum magnet cryostat external diameter compatible with LHC tunnel ~1200 mm
- Classical cryostat design gives ~1500 mm diameter!

Strategy: develop optimized 16 T magnet, compatible with both HE LHC and FCC-hh requirements:


- Allow stray-field and/or cryostat as return-yoke
- **Optimization of inter-beam distance (compact)**
- → Smaller diameter also relevant for FCC-hh cost

16 T magnet R&D schedule

EuroCirCol



would follow HL-LHC Nb₃Sn program with long models at industry from 2023/24

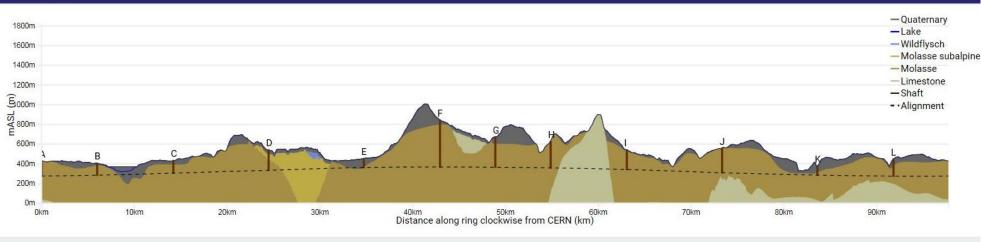
CE tunnel implementation study

0110	ose alignm	ent option					
V4v	ariation_v2	017-2 🗸					
Tuni	nel elevatio	n at centre:	322m	ASL			
(
Grad	d. Params						
		Azimut	h (°):	-2	3.5		
	Slope Angle x-x(%):			0.	0.3		
	SIG	pe Angle y-	y(%):	0.	08		
LO	AD	SAVE		C	ALCULATE		
Alig	nment cent	re					
-	innenic oen						
X:	2499941		Y:	1107	760		
X:		CP 1	Y:		760 CP 2		
X:							
X:	2499941	CP 1			CP 2		
	2499941 Angle	CP 1 Depth		gle	CP 2 Depth		
LHC	2499941 Angle	CP 1 Depth 49m		gle	CP 2 Depth 83m		

Geolo	ogy inte	rsected by Sr	iaπs Sr	lant Depths				
	Shaft Depth (m)					Geology (m)		
Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Limesto	
А	152	0	0	0	152	0	į	
В	121							
С	127							
D	205							
Е	89							
F	476							
G	307							
н	266							
I	198							
J	248							
к	88							
L	172							
Total	2449	66	0	492	1892	0		

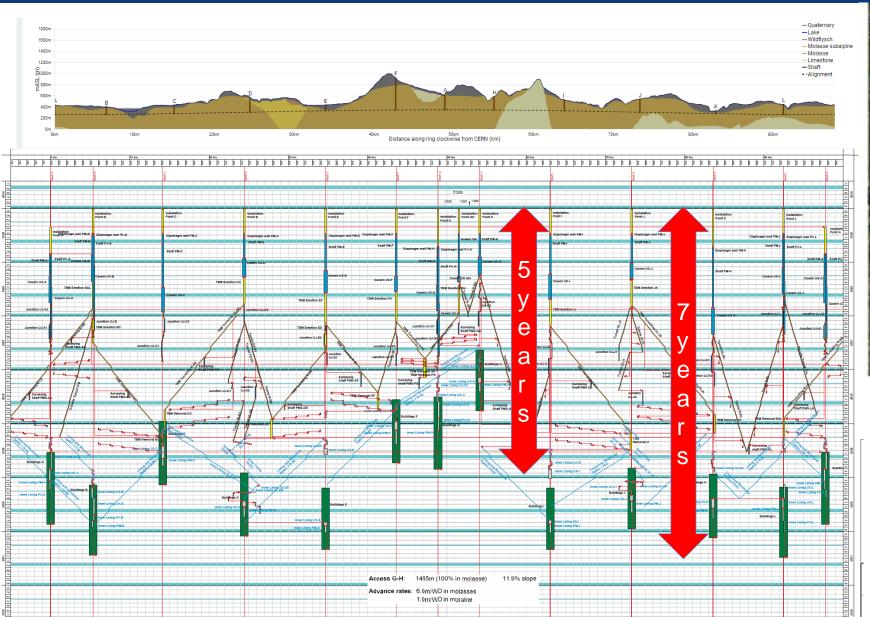
Optimisation criteria:

- tunneling rock type,
- shaft depth accessibility
- surface points, etc.

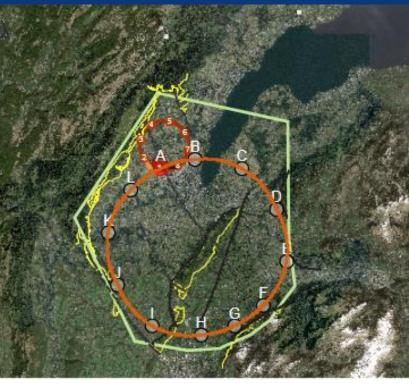

Tunneling:

- Molasse 90%,
- Limestone 5%,
- Moraines 5%

Implementation:

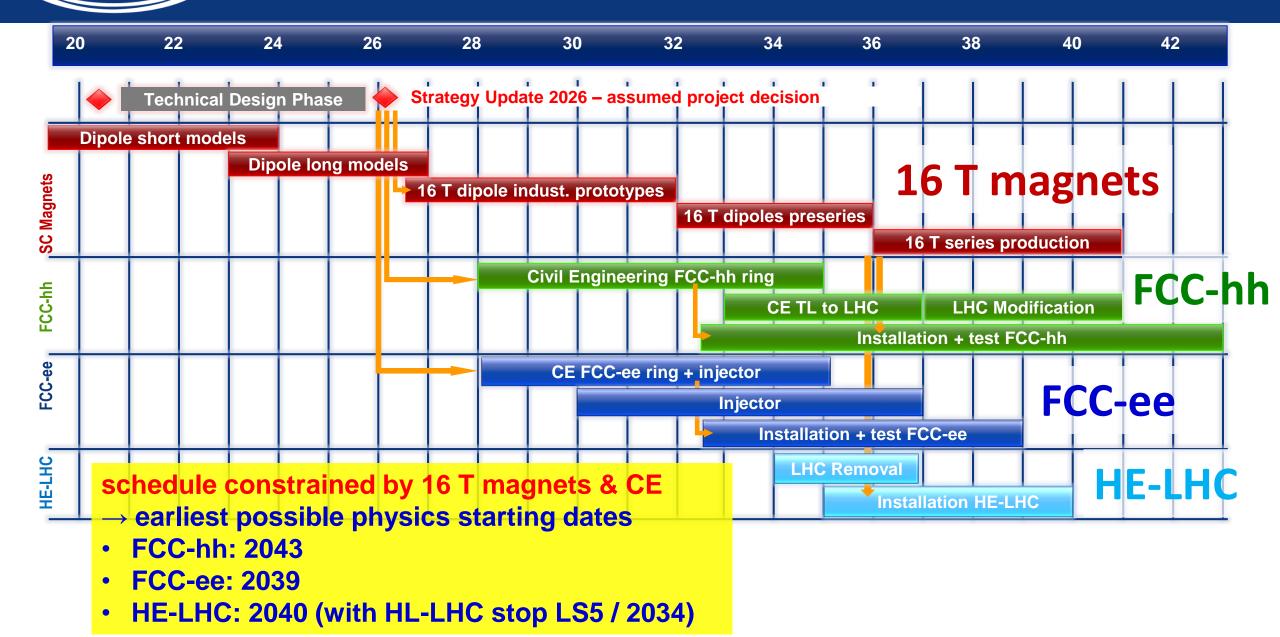

- 90-100 km fits well geological situation in Geneva basin
- Shallow variant,
 30 m below lake-bed
- Connected with LHC or SPS

Alignment Profile



Geology Intersected by Tunnel Geology Intersected by Section

CE schedule study



n ee he

- CE & schedule studies with consultants
- first sectors available after
 4.5 to 5 years for Technical
 Infrastructure installation
- total CE duration ~7 years

Technical Schedule for each the 3 Options

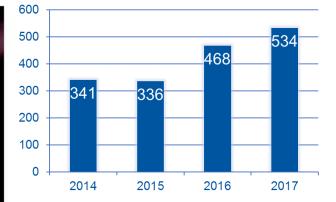
hh ee he

FCC Collaboration & Industry Relations

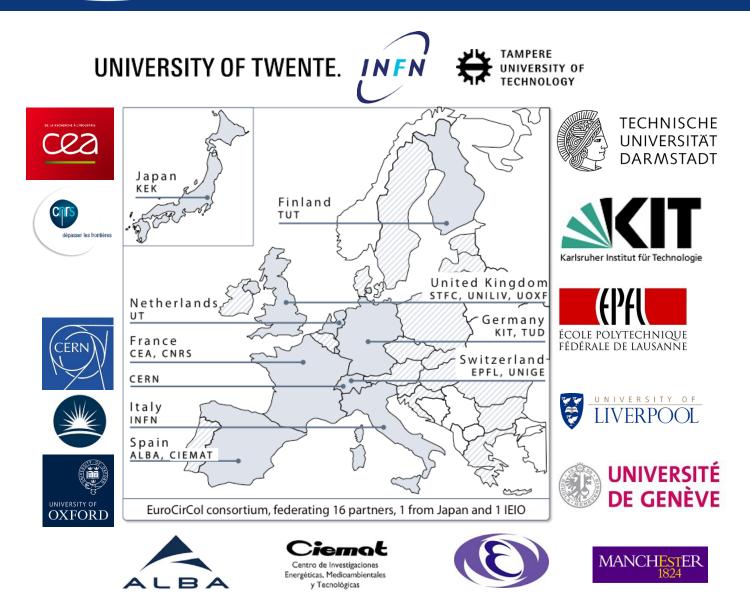
Institutes

Companies

25



Countries


EXAMPLE 1 EXAMPLE 1 EXAMP

(CDO)

> 500 participants, 147 institutes a lot of young people (>35% younger than 35

EU H2020 Design Study EuroCirCol EuroCirCol

hh ee he

European Union Horizon 2020 program

- Support for FCC-hh study
- 3 MEURO co-funding
- Started June 2015, ends in May 2019

Scope:

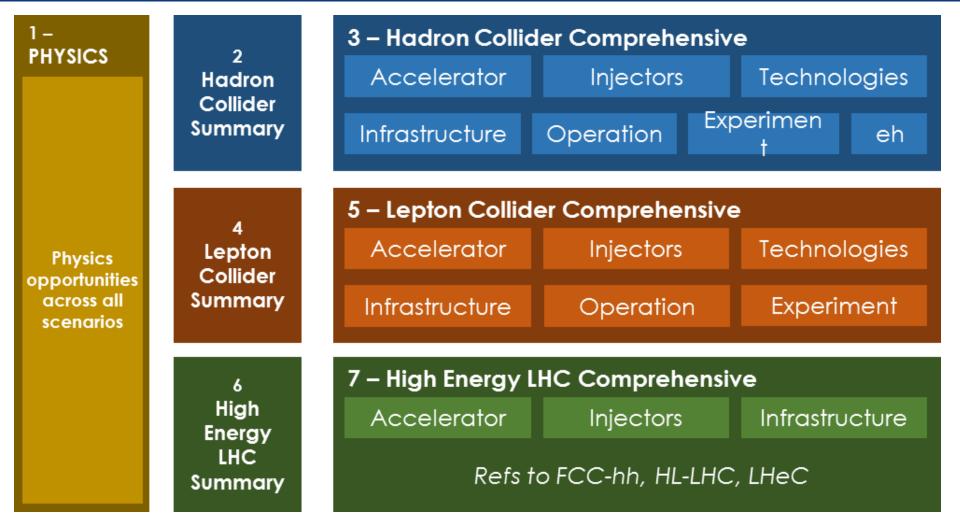
FCC-hh collider

- Optics Design (arc and IR)
- Cryogenic beam vacuum system design including beam tests at ANKA
- 16 T dipole design, construction folder for demonstrator magnets

EASITrain Marie Curie Training Network

European Advanced Superconductivity Innovation and Training Network
 > selected for funding by EC in May 2017, started 1 October 2017

- SC wires at low temperatures for magnets (Nb₃Sn, MgB₂, HTS)
- Superconducting thin films for RF and beam screen (Nb₃Sn, TI)
- Electrohydraulic forming for RF structures
- Turbocompressor for Nelium refrigeration
- Magnet cooling architectures


h ee he

Horizon 2020 program Funding for 15 Early Stage Researchers over 3 years & training

Conceptual Design Report

CDR summary volumes will be available by end 2018, as input for European Strategy Update 2019/20

- Fast advancement of the FCC study in all areas
- Accelerator designs of FCC-hh and FCC-ee machine ready for CDR
- Worldwide R&D programme on high-field magnets and Nb₃Sn superconductor and SRF in place
- EU support for EuroCirCol and EASITrain ITN
- International FCC collaboration is growing steadily, focusing now on writing the CDRs as input for European Strategy Update

also 2018 FCC Physics Workshop, 15-19 January 2018, CERN