Lepton Flavour Universality and anomalies in $b \rightarrow sll$ decays

101st Plenary ECFA Meeting, CERN, 16th November 2017

Mitesh Patel (Imperial College London) on behalf of the ATLAS, BaBar, Belle, CMS and LHCb collaborations

Imperial College London

Introduction

- Interesting set of anomalies have appeared in measurements of b→sll decays :
 - Angular observables in $B^0 {\rightarrow} K^{*0} \mu \mu$
 - Branching fractions of several of $b \rightarrow sll$ processes
 - Lepton-flavour universality ratios in $b \rightarrow sll$ decays
- Extent of discrepancies depends on several theoretical issues – will try and highlight where experiment can provide some future input into these issues

b→sll decays

- b→sll decays involve flavour changing neutral currents → loop process
- Best studied decay $B^0 \rightarrow K^{*0} \mu \mu$
- Large number of observables: BF, A_{CP} and angular observables – dynamics can be described by three angles (θ_I, θ_K, φ) and di-μ invariant mass squared, q²

 $B^0 \rightarrow K^{*0} \mu \mu$

- Try to use observables where theoretical uncertainties cancel e.g. Forward-backward asymmetry A_{FB} of θ_{I} distn
- Interpreted in effective field theory describing couplings (C) of photon (O₇), vector (O₉) and axial-vector (O₁₀) operators

$B^0 \rightarrow K^{*0} \mu \mu$ angular analysis

CMS and ATLAS confirm these findings

Global fits

- Several theory groups have interpreted results by performing global fits to b→sll data e.g. [arXiv:1704.05340, EPJC(2017)77:377]
- Consistent picture, tensions solved simultaneously by a modified vector coupling (ΔC₉ != 0) at >3σ but discussion of residual hadronic uncertainties (...)

Lepton universality measurements

$b \rightarrow sll$ interpretation

• Adding the LFU measurements in, the size of the discrepancy \rightarrow >4 σ [see e.g. arXiv:1704.05340]

cc loops

 Theorists have started to look critically at their predictions – O_{1,2} operators have a component that could mimic a NP effect in C₉ through cc̄ loop

 Recent paper fits parameterisation to theory and auxiliary data to try and determine cc effect
 [arXiv:1707.07305]

cc loops and near term prospects

- Effect can be parameterised as function of three helicity amplitudes, h₊₋₀
 - Absorb effect of these amplitudes into a helicity dependent shift in C₉,
 - $C_9^{SM} + \Delta C_9^{+-0}(q^2)$ cf $C_9^{SM} + \Delta C_9^{NP}$
 - → Look for q^2 and helicity dependence $C_9^{2^{\circ} -1.0}$
- In near term, will add more Run 2 data e.g. at LHCb :
 - $B^0 \rightarrow K^{*0} \mu \mu$ angular analysis $\sim \sqrt{2}$ improvement
 - Ditto R_{K} and R_{K^*} updates
 - New decays $\rightarrow R_{\phi}, R_{\Lambda}$
 - Measure R ratios for CKM suppressed decays

A glimpse of the future

- At low q², ΔC₉⁺⁻⁰(q²) term arises mainly from interference rare decay and J/ψ
- Measure phase of interference by fitting differential rate (and angles)
- LHCb has performed such a fit for B⁺→K⁺µ⁺µ⁻ [EJPC (2017) 77:161], considerably more complex for B⁰→K^{*0}µµ but principle the same

A glimpse of the future

- Can make ratio of $P_5'(e)$ and $P_5'(\mu) \rightarrow Q_5$
- Thus far, only done by Belle full angular analysis of B⁰→K^{*0}ee in progress at LHCb

$B^0 \rightarrow \mu^+ \mu^-$ branching fractions

- Single-particle explanations of anomalies predict C₉^{NP}= -C₁₀^{NP}
 Global fits are still compatible with such a solution
- Would then expect to see an effect in $B(B^0 \rightarrow \mu^+ \mu^-)$ decays
- No evidence for any deviation from SM so far...

Conclusions

- Interesting set of anomalies observed in B decays given experimental precision and theoretical uncertainties, none of them are yet compelling
- Near-term updates should clarify the situation and can help constrain some of the theoretical issues
- Wide range of new measurements will be added to broaden the constraints on the underlying physics
- At LHCb, full Run-2 dataset will give factor ~4 more data than Run-I on timescale that Belle-2 will start running. ATLAS/CMS will also be able to contribute in a number of cases

Cross-checks

 Control of the absolute scale of the efficiencies is tested by measuring

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

- Expect unity in SM
- Does not benefit from the large cancellation of experimental systematics
- Measure 1.043±0.006 (stat) ±0.045 (syst)
- Result is independent of the decay kinematics