Lepton Flavour Universality and anomalies in $b \rightarrow s$ sll decays

ECFA
 European Committee for Future Aceslerators:

$101^{\text {st }}$ Plenary ECFA Meeting, CERN, $16^{\text {th }}$ November 2017
Mitesh Patel (Imperial College London)
on behalf of the ATLAS, BaBar, Belle, CMS and LHCb
collaborations
PatLAS BABAR

LHCb
THGP
Imperial College London

Introduction

- Interesting set of anomalies have appeared in measurements of $b \rightarrow s$ ll decays :
- Angular observables in $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu \mu$
- Branching fractions of several of $b \rightarrow$ sll processes
- Lepton-flavour universality ratios in $b \rightarrow s$ ll decays
- Extent of discrepancies depends on several theoretical issues - will try and highlight where experiment can provide some future input into these issues

$b \rightarrow s$ ll decays

- $b \rightarrow s$ sll decays involve flavour changing neutral currents \rightarrow loop process

- Best studied decay $B^{0} \rightarrow K^{* 0} \mu \mu$
- Large number of observables: BF, A_{CP} and angular observables dynamics can be described by three angles $\left(\theta_{\mid}, \theta_{k}, \phi\right)$ and di- μ invariant mass squared, q^{2}

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu \mu$

- Try to use observables where theoretical uncertainties cancel e.g. Forward-backward asymmetry $A_{F B}$ of $\theta_{\text {I }}$ distn
- Interpreted in effective field theory describing couplings (C) of photon $\left(\mathrm{O}_{7}\right)$, vector $\left(\mathrm{O}_{9}\right)$ and axial-vector $\left(\mathrm{O}_{10}\right)$ operators

dimuon invariant mass squared, q^{2}

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu \mu$ angular analysis

- LHCb performed first full angular analysis [JHEP 02 (2016) 104]
- Extracted the full set of CP-avg'd angular terms and correlations
- Determined full set of CP-asymmetries

- Vast majority of observables in agreement with SM predns, giving some confidence in theory control of form-factors

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu \mu$ angular analysis

- CMS and ATLAS confirm these findings

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu \mu$ angular analysis

- In SCET/QCD factorisation can reduce to just two form-factors- can then construct ratios of observables which are independent of form-factors at LO [JHEP 1204 (2012) 104]

[JHEP 02 (2016) 104]

[PRL 118 (2017) 111801]
- Form-factor "independent" P_{5} ' has a local discrepancy in two bins - (subsequently confirmed by Belle)
$\rightarrow 3.4 \sigma$ discrepancy with the vector coupling $\Delta C_{9}=-1.04 \pm 0.25$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu \mu$ angular analysis

- In SCET/QCD factorisation can reduce to just two form-factors- can then construct ratios of observables which are independent of form-factors at LO [JHEP 1204 (2012) 104]

- Form-factor "independent" P_{5} ' has a local discrepancy in two bins - (subsequently confirmed by Belle)
$\rightarrow 3.4 \sigma$ discrepancy with the vector coupling $\Delta C_{9}=-1.04 \pm 0.25$

$\mathrm{b} \rightarrow \mathrm{sll}$ branching fractions

- Several $b \rightarrow s l l$ branching fractions measured at LHCb show some tension with predictions, particularly at low q^{2}

Global fits

- Several theory groups have interpreted results by performing global fits to $b \rightarrow s$ sll data e.g. [arXiv:1704.05340, EPJC(2017)77:377]
- Consistent picture, tensions solved simultaneously by a modified vector coupling $\left(\Delta C_{9}!=0\right)$ at $>3 \sigma$ but discussion of residual hadronic uncertainties (...)

Lepton universality measurements

[JHEP 08 (2017) 055]

- Whatever hadronic uncertainties affect $b \rightarrow$ sll decays, they should cancel in the ratio of $B F$

$$
\mathrm{R}_{\mathrm{K}^{*} 0, \mathrm{~K}}=\mathrm{BF}\left(\mathrm{~B}^{0,+} \rightarrow \mathrm{K}^{* 0,+} \mu \mu\right) / \mathrm{BF}\left(\mathrm{~B}^{0,+} \rightarrow \mathrm{K}^{* 0,+} e e\right)
$$

- \mathbf{R}_{K} is 2.6σ below SM prediction [PRL 113 (2014) 151601]

- Recent $\mathbf{R}_{\mathbf{K}^{*}}$ measurement
- low q${ }^{2}$: 2.1-2.3o below SM predn
- ctl q ${ }^{2}$: 2.4-2.5 σ below SM predn

Further increases discrepancy
[JHEP 08 (2017) 055]

$\mathrm{b} \rightarrow$ sll interpretation

- Adding the LFU measurements in, the size of the discrepancy $\rightarrow>4 \sigma$ [see e.g. arXiv:1704.05340]

... but community still reluctant to call this NP

cc̄ loops

- Theorists have started to look critically at their predictions - $\mathbf{O}_{1,2}$ operators have a component that could mimic a NP effect in C_{9} through cc̄ loop

- Recent paper fits parameterisation to theory and auxiliary data to try and determine cc̄ effect [arXiv:1707.07305]

cc̄ loops and near term prospects

- Effect can be parameterised as function of three helicity amplitudes, \mathbf{h}_{+-0}
- Absorb effect of these amplitudes into a helicity dependent shift in C_{9},

$$
\mathrm{C}_{9} \mathrm{SM}+\Delta \mathrm{C}_{9}^{+-0}\left(\mathrm{q}^{2}\right) \quad \text { cf. } \quad \mathrm{C}_{9} \mathrm{SM}+\Delta \mathrm{C}_{9} \mathrm{NP}
$$

\rightarrow Look for \mathbf{q}^{2} and helicity dependence of shift in \mathbf{C}_{9}

- In near term, will add more Run 2 data e.g. at LHCb :

- $B^{0} \rightarrow K^{* 0} \mu \mu$ angular analysis $\sim \sqrt{ } 2$ improvement
- Ditto R_{K} and $R_{K^{*}}$ updates
- New decays $\rightarrow R_{\phi}, R_{\Lambda}$
- Measure R ratios for CKM suppressed decays

A glimpse of the future

- At low $q^{2}, \Delta C_{9}{ }^{+-0}\left(q^{2}\right)$ term arises mainly from interference rare decay and J / ψ
- Measure phase of interference by fitting differential rate (and angles)
- LHCb has performed such a fit for $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$[EJPC (2017) 77:161], considerably more complex for $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu \mu$ but principle the same

A glimpse of the future

- Can make ratio of $P_{5}{ }^{\prime}(e)$ and $P_{5}{ }^{\prime}(\mu) \rightarrow Q_{5}$
- Thus far, only done by Belle - full angular analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0}$ ee in progress at LHCb

$\mathrm{B}^{0} \rightarrow \mu^{+} \mu^{-}$branching fractions

- Single-particle explanations of anomalies predict $\mathrm{C}_{9} \mathrm{NP}=-\mathrm{C}_{10} \mathrm{NP}$ Global fits are still compatible with such a solution
- Would then expect to see an effect in $B\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)$decays
- No evidence for any deviation from SM so far...

Conclusions

- Interesting set of anomalies observed in B decays given experimental precision and theoretical uncertainties, none of them are yet compelling
- Near-term updates should clarify the situation and can help constrain some of the theoretical issues
- Wide range of new measurements will be added to broaden the constraints on the underlying physics
- At LHCb, full Run-2 dataset will give factor ~ 4 more data than Run-I on timescale that Belle-2 will start running. ATLAS/CMS will also be able to contribute in a number of cases

Cross-checks

- Control of the absolute scale of the efficiencies is tested by measuring

$$
r_{J / \psi}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} J / \psi\left(\rightarrow e^{+} e^{-}\right)\right)}
$$

- Expect unity in SM
- Does not benefit from the large cancellation of experimental systematics
- Measure 1.043 ± 0.006 (stat) ± 0.045 (syst)
- Result is independent of the decay kinematics

