

COOLING & VENTILATION INFRASTRUCTURE

Mauro Nonis Pedro Cabral

CLIC CEIS Working Group Meeting 09/03/2018

- 1 Present situation for CV systems
- 2 Open issues and possible solutions
- 3 Next steps
- 4 Conclusions and discussion

Defining the Problem - Layout

Work done until now

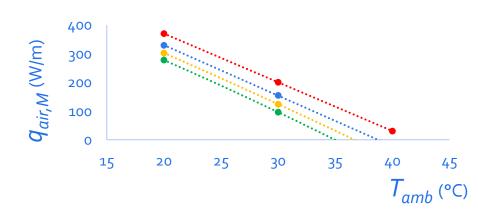
• Air Cooling and Ventilation for the 380 GeV option

Geometry definition:

- Length: 5413 m on each side
- 4 sequences of modules (foreseen to change in the future without affecting the overall length and heat loads)

Heat Transfer to Air

Custom	Floreorto		TO)	<i>T</i> 1		<i>T</i> 2	2
System	Elements	Heat/Element [W]	# Elements	Air [W]	# Elements	Air [W]	# Elements	Air [W]
	Main B. Movers	0,6	3	1,8	6	3,6	6	3,6
Alignment	Drive B. Movers	0,6	3	1,8	3	1,8	3	1,8
	MBQ Movers	0,6	0	-	5	3,0	5	3,0
Beam Instru.	Main B. BPM	13,0	0	-	1	13,0	1	13,0
Deditt itistitu.	Drive B. BPM	13,0	2	26,0	2	26,0	2	26,0
	Mini Pump Main	10,0	6	60,0	6	60,0	6	60,0
Vacuum System	Mini Pump Drive	12,5	2	25,0	2	25,0	2	25,0
vacuum System	Penning G. Main	10,0	1	10,0	1	10,0	1	10,0
	Penning G. Drive	12,5	1	12,5	1	12,5	1	12,5
	Controller	80,0	0	-	1	80,0	1	80,0
MQB Stabilization	Seism./P Supp.	1,7	0	-	2	3,3	3	5,0
	Piezo	1,0	0	-	4	4,0	6	6,0
RF System	Eletronics	13,0	1	13,0	1	13,0	1	13,0
KI System	Waveguides	11,3	4	45,2	3	33,9	2	22,6
	-		Total [W]	195,3	Total [W]	289,1	Total [W]	281,5
			Total [W/m]	82,9	Total [W/m]	122,7	Total [W/m]	119,4


-	Components	Total [W]	Total [W/M]		Diasce confirm
	Supply	<u>Unk</u>	<u>nown</u>	Total [W/m]	Please confirm
Cables	DBQ	68000	19,4	124	these values
	MBQ	22000	6,3	4	

Heat Transfer to Air and Water

			<i>T</i> 0		<i>T</i> 1		<i>T</i> 2				
	-	Heat/Ele. [W]	# Elements	Air [W]	Water [W]	# Elements	Air [W]	Water [W]	# Elements	Air [W]	Water [W]
	MBQ (Small)	1218,0	0	-	-	1	<u>Unk</u>	nown	0	-	-
Magnets	MBQ (Big)	2356,0	0	-	-	0	-	-	1	<u>Unl</u>	<u>known</u>
	DBQ	171,0	2			2			2		
DE	AS	391,6	8	Cup			Curry		4		
RF System	LOADS	168,4	16	Curves - WIP		12	Curves - WIP		8	Curves - WIP	
	PETS	88,0	4			3			2		

†*T_{amb}* ↓*q_{air}*

 $q_{air,M} + q_{water,M} = q_{Gen}$

Solutions – Longitudinal Design

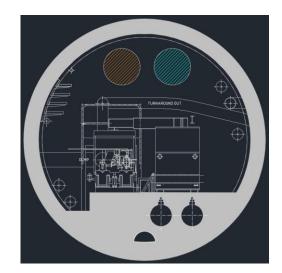
Length	Velocity	Free A	ΔT
5413 m	1 m/s	17 M ²	10°C

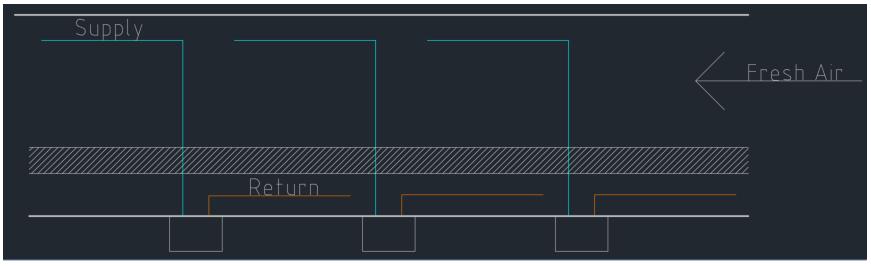
High $\Delta T \&$ Missing Modules

61 W/m < 124 W/m

Half of the required Power

_	Shaf	+			Shaf	
					BDS	
	120T1+150T0T1+8T0T0T1	78T0T0T1+62T0T0T2+2T0T0T0T2	107T0T0T0T2	41T0T0T0T2+4T0T0T0T0T2		




Solutions – Transversal Design

T _{amb}	Heat Load	ΔT	Ν	Flow Rate	D
25°C	324 W/m	5°C	19	36'000 m³/h	1 M

Large Number of Alcoves and AHU Operational and scaling constraints R₂E validation

Future Work

Validation / Missing Heat Loads

• Tunnel and <u>all other premises</u> – Required to design the cooling towers

			Power (kW)
Sector 1			198 960
	а	Drive beam injectors building	142 560
	b	Drive beam injectors tunnel	15 840
	с	Frequency multiplication	15 581
	d	Transfer lines	8 028
	e	Chilled water production	16 951
Sector 2			62 922
	а	Main beam injectors building	14 215
	b	Main beam injectors tunnel	1 465
	с	Surface damping rings	21 634
	d	Tunnel damping rings	16 717
	e	Booster tunnel	1 066
	f	Booster building	5 364
	g	Chilled water production	2 461
Sector 3 (I	Drive Be	am Machine)	138 000
	a	Tunnel e-	69 000
	b	Tunnel e+	69 000
Sector 4 (UTRs, d	umps, loops,)	104 374
	a	Tunnel e-	52 187
	b	Tunnel e+	52 187
Sector 5			65 329
	Α	Detector premises	17 000
	В	Accelerator tunnel	41 760
	С	Chilled water production	6 569

Preferably before the 15th of April

3TeV CDR values

Define a solution for the CV and design

Study specific solutions for complex / particular cases

Evaluate the impact on the cross section

Propose a global solution to present in the CDR

Develop the klystron CV + other energy stages

While designing we have to consider safety requirements

- In case of fire Smoke extraction, flow patterns, etc...
- Are we allowed to recycle air?

We do not know these requirements yet

1) Traditional longitudinal ventilation is <u>apparently</u> not feasible

2) A transversal system might be the solution - several drawbacks

3) Missing / old information need serious attention

4) The CV solutions are highly dependent on that information

Questions and Remarks

Thank You for Your Attention

