CLIC Module Heat load calculations, modelling and experimental program

M. Aicheler

On behalf of A. Vamvakas, A. Moilainen and E. Lam

CLIC workshop 2018 23.01.2018

Outline

- A bit of history
- Experiment
- Numerical approaches
- Conclusion and Outlook

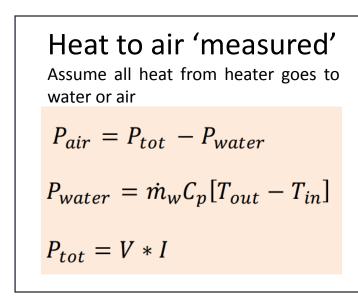
In the frame of the CLIC implementation process we had to provide heat to air/water numbers for all three machines -> work based on CDR effort with updates and some revisions

Drive Beam Machine 3 TeV			Drive Beam Machine 380 GeV				Klystron machine 380 GeV				
	total units unit	tatal air unit	least size weit	Description	total water wit	total size unit	least size usit	Description	tatal water wit	tatal air unit	lessi sir unit
escription	total water unit	total air unit	local air unit	Description	total water unit	total air unit	local air unit	Description	total water unit	total air unit	local air unit
lignment systems:				Alignment systems:				Alignment systems:			
lain beam	0 W	22,259 W	1.0 W/m	Main beam	0 W	3,701 W	1.0 W/m	Main beam	0 W	2,621 W	0.8 W/m
rive beam	0 W	18,666 W	0.9 W/m	Drive beam	0 W	2,671 W	0.8 W/m	Drive beam	0 W	0 W	0.0 W/m
IBQs	0 W	0 W	0.0 W/m	MBQs	0 W	0 W	0.0 W/m	MBQs	0 W	0 W	0.0 W/m
um:	0 W	40,925 W	1.9 W/m	Sum:	0 W	6.372 W	1.8 W/m	Sum:	0 W	2.621 W	0.8 W/m
um.	0 **	40,925 W	1.3 \\//11	Sum.	0 10	0,372 VV	1.0 VV/III	Sun.	0 10	2,021 VV	0.8 ////
PM@Quads:				BPM@Quads:				BPM@Quads:			
ain Beam	0 W	25,948 W	1.2 W/m	Main Beam	0 W	7,436 W	2.1 W/m	Main Beam	0 W	7,644 W	2.3 W/m
Prive Beam	0 W	269,620 W	12.6 W/m	Drive Beam	0 W	38,584 W	10.9 W/m	Drive Beam	0 W	0 W	0.0 W/m
um:	0 W	295,568 W	13.9 W/m	Sum:	0 W	46,020 W	13.0 W/m	Sum:	0 W	7,644 W	2.3 W/n
acuum:				Vacuum:				Vacuum:			
lain Beam	0 W	751,825 W	35.3 W/m	Main Beam	0 W	107,590 W	30.3 W/m	Main Beam	0 W	105,560 W	31.7 W/m
Drive Beam	0 W	337,025 W	15.8 W/m	Drive Beam	0 W	48,230 W	13.6 W/m	Drive Beam	0 W	0 W	0.0 W/m
Sum:	0 W	1,088,850 W	51.1 W/m	Sum:	0 W	155,820 W	43.9 W/m	Sum:	0 W	105,560 W	31.7 W/m
lagnets:				Magnets:				Magnets:			
IBQs	5,040,929 W	265,312 W	12.4 W/m	MBQs	895.379 W	47,125 W	13.3 W/m	MBQs	688,237 W	36,223 W	10.9 W/m
IBQ cables	0 W	132.000 W	6.2 W/m	MBQ cables	0 W	22.000 W	6.2 W/m	MBQ cables	000,237 W	22.000 W	6.6 W/m
BQs	3,369,213 W	177,327 W	8.3 W/m	DBQs	482,152 W	25,376 W	7.1 W/m	DBQs	0 W	0 W	0.0 W/m
BQ cables	0 W	408.000 W	19.1 W/m	DBQ cables	402,132 W	68.000 W	19.1 W/m	DBQ cables	0 W	0 W	0.0 W/m
Sum:	8.410.142 W	982.639 W	46.1 W/m	Sum:	1.377.530 W	162.502 W	45.7 W/m	Sum:	688.237 W	58.223 W	17.5 W/m
IBQ stabilisation systems:				MBQ stabilisation systems:				MBQ stabilisation systems:			
Controller	0 W	159,680 W	7.5 W/m	Controller	0 W	45,760 W	12.9 W/m	Controller	0 W	47,040 W	14.1 W/m
eismometer & powersupply	0 W	13,695 W	0.6 W/m	Seismometer & powersupply	0 W	2,258 W	0.6 W/m	Seismometer & powersupply	0 W	2,327 W	0.7 W/m
Piezo actuators	0 W	11,668 W	0.5 W/m	Piezo actuators	0 W	2,720 W	0.8 W/m	Piezo actuators	0 W	2,804 W	0.8 W/m
Sum:	0 W	185,043 W	8.7 W/m	Sum:	0 W	50,738 W	14.3 W/m	Sum:	0 W	52,171 W	15.7 W/m
RF systems (unloaded case!):				RF systems (unloaded case!):				RF systems (unloaded case!):			
S	27.334.217 W	3.727.393 W	174.8 W/m	AS	3.548.084 W	483.830 W	136.2 W/m	AS	3.963.768 W	540.514 W	162.1 W/m
F loads	18,394,186 W	0,121,000,00		PE loads	2,773,331 W	693,333 W	195.2 W/m	RF loads	2,710,723 W	677,681 W	203.3 W/m
S WFM	0 W	110		M	0 W	19,292 W	5.4 W/m	AS WFM	0 W	18,928 W	5.7 W/m
ETS	2,764,840 W	416	5W/m		398,661 W	54,363 W	15.3 W/m	Pulse compression & distribution	5,094,787 W	268,147 W	80.4 W/m
RF distribution	355,031 W			AF distribution	51,192 W	6,981 W	2.0 W/m	Klystron	8,541,260 W	449,540 W	134.9 W/m
	40.040.072 \/	0.070.004.141	440.0 \\\\\	Curren	0 774 007 14	4 257 700 14	254.4 10/1-11	Modulator	3,768,203 W	198,326 W	59.5 W/m
ium:	48,848,273 W	8,876,684 W	416.3 W/m	Sum:	6,771,267 W	1,257,798 W	354.1 W/m	Sum:	11,769,277 W	1,505,269 W	451.6 W/m
F systems (loaded case!):				RF systems (loaded case!):				RF systems (loaded case!):			
S	21,955,346 W	2,993,911 W	140.4 W/m	AS	2,623,009 W	357,683 W	100.7 W/m	AS	2,938,744 W	400,738 W	120.2 W/m
F loads	10,962,249 W	2,740,562 W	128.5 W/m	RF loads	1,227,283 W	306,821 W	86.4 W/m	RF loads	1,199,278 W	299,820 W	89.9 W/m
S WFM	0 W	125,307 W	5.9 W/m	AS WFM	0 W	19,292 W	5.4 W/m	AS WFM	0 W	18,928 W	5.7 W/m
ETS	2,764,840 W	377,024 W	17.7 W/m	PETS	398,661 W	54,363 W	15.3 W/m	Pulse compression & distribution	5,094,787 W	268,147 W	80.4 W/m
F distribution	355,031 W	48,413 W	2.3 W/m	RF distribution	51,192 W	6,981 W	2.0 W/m	Klystron	8,541,260 W	449,540 W 198 326 W	134.9 W/m
um:	36,037,466 W	6,285,217 W	294.8 W/m	Sum:	4,300,145 W	745,139 W	209.7 W/m	Sum:	3,768,203 W 9,232,809 W	198,326 W 987,632 W	296.3 W/n
		0,200,211 14	204.0 11/11	oum.	-,000,140 //	140,100	200.1		0,202,000 1		200.0
			07.00								
otal per linac ZERO beams:	8,410,142 W	- 5	37 W/m	ZERO beams:	1,377,530 W	421,451 W	118.6 W/m	Total per linac RF OFF:	688,237 W	226,219 W	67.9 W/m
otal per linac ONE beam:	57,258,415 W			ac ONE beam:	8,148,798 W	1,679,249 W	472.7 W/m	Total per linac RF ON & NO beam:	12,457,514 W	1,731,488 W	519.4 W/m
otal per linac TWO beams:	44,447,608 W	8.878.244		notal per linac TWO beams:	5.677.675 W	1.166.591 W	328.4 W/m	Total per linac RF ON & beam:	9.921.046 W	1.213.851 W	364.1 W/m

Situation as of July 2017

Looking closer on the accelerating structures and their loads

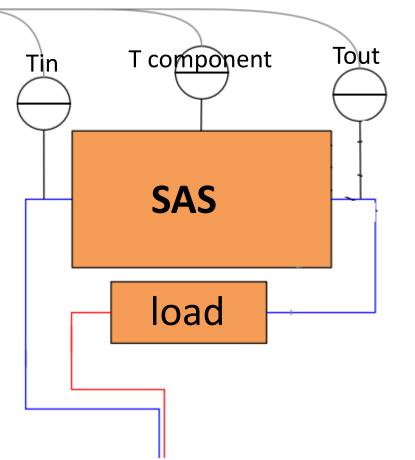
435	۱۸/	
	VV	unloaded!
322	W	unloaded!
349	W	loaded!
192	W	loaded!
71,406		
31,061,610	W	unloaded!
24,949,256	W	loaded!
0.88	-)·	
22,992,732	W	unloaded!
13,702,811	W	loaded!
0.80		
	349 192 71,406 31,061,610 24,949,256 0.88 22,992,732 13,702,811	322 W 349 W 192 W 71,406 31,061,610 W 24,949,256 W 0.88 22,992,732 W 13,702,811 W 0.80

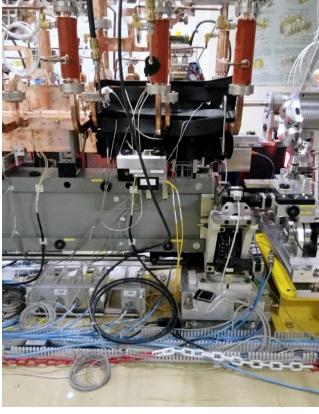

These numbers varied historically from 1 to 0.8

-> we had to understand those numbers better and get them as high as we can

Experiment

Two beam module test lab:

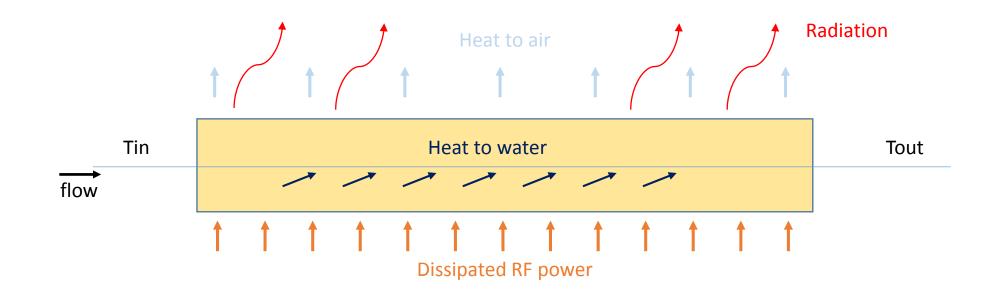

Naked and insulated SAS



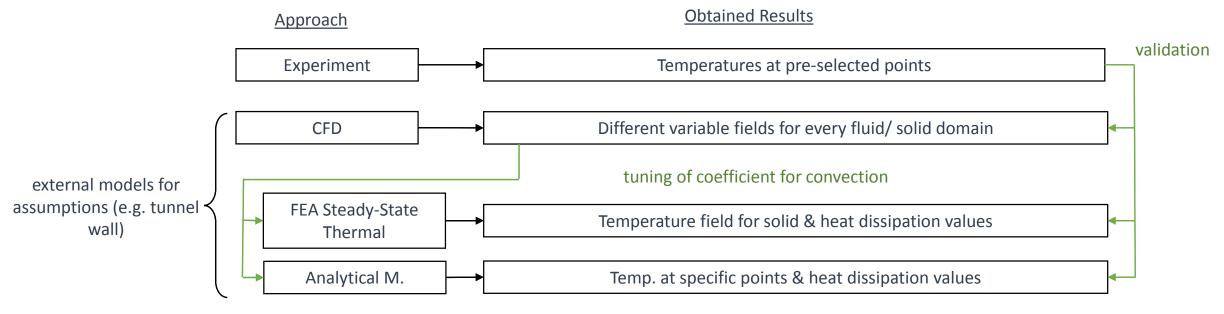
Heat to air theory

$$P_{air} = hA[T_{comp} - T_{ambient}]$$

Ср	4184	J/kg/K
h	11~20	W/m2/K
A	0.7273	M2
<i>m'</i>	0.026~0.039	kg/sec

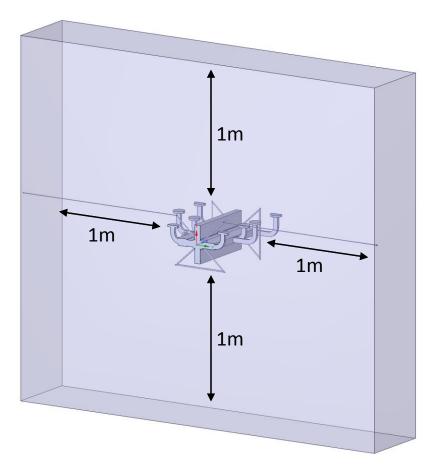

Problem:

- heat conducted away through girder/waveguides/vacuum system
- Minor errors in temperature accuracy huge errors in power


- Simple pipe, heated and cooled all along
- Excludes folding of piping
- Run time for SAS: 1 sec
- Run time for TBM: 3 sec
- Can be used to run many different combinations,

Downsides:

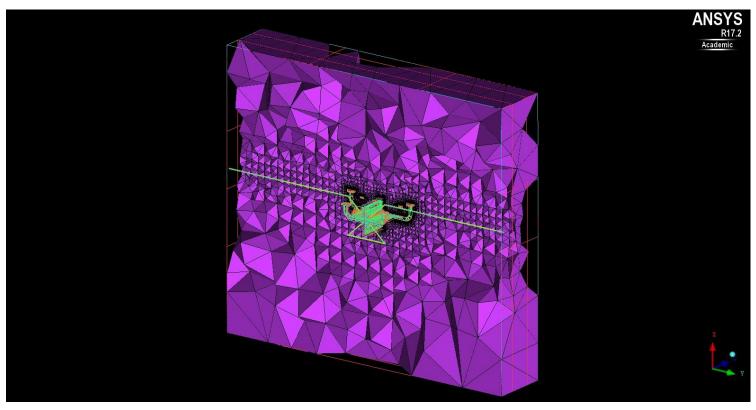
- Heavy assumptions for heat transfer coefficient
- No possibility to simulate real heat channel routing in SAS



Combined approach

E. Lam, CLIC Project meeting 08.12.2017

Problem Definition

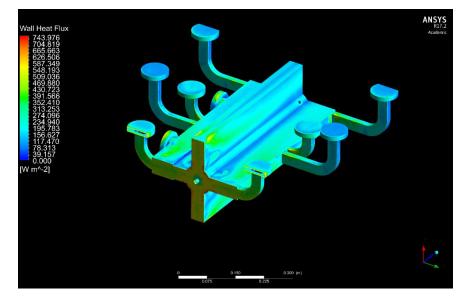


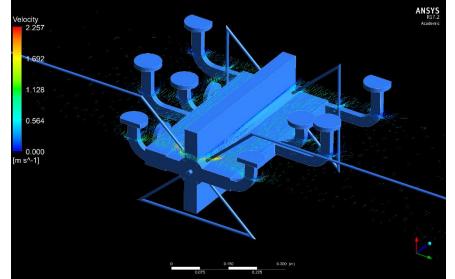
- Only one super-accelerating structure
- In "free" space
- Domain boundary 1 m from the structure
- Artificial pipes

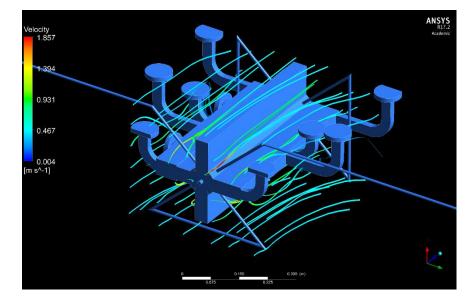
Materials:

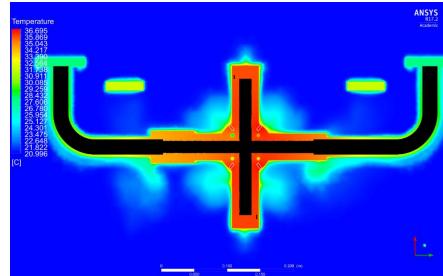
- Copper for the structure and pipes
- Air (variable ρ , incompressible ideal gas law)
- Water (constant ρ)

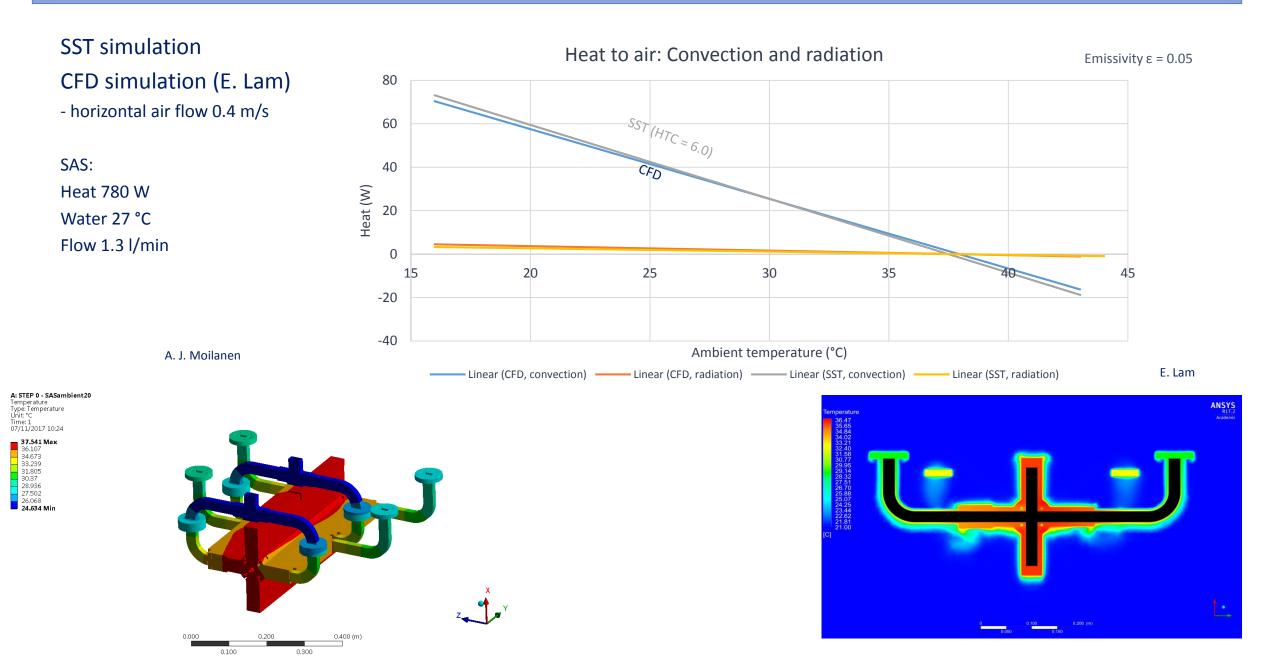
Meshing

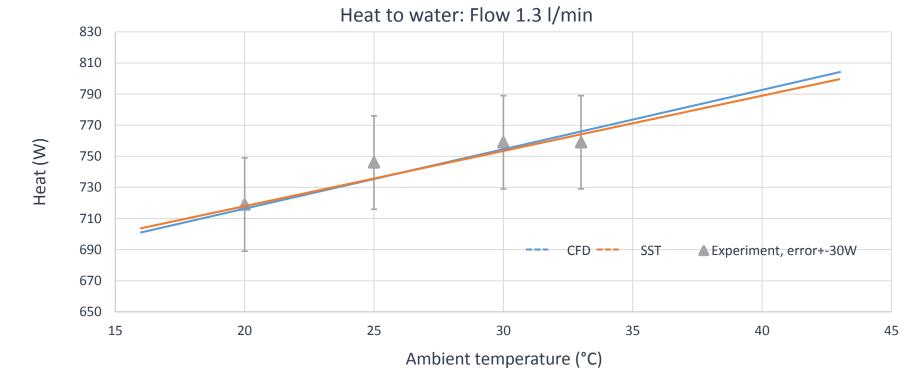

Mesher: ANSYS ICEM CFD v17.2 Type of elements: tetrahedron


Number of elements: 43 million for the finest mesh Coarser meshes were generated to determine mesh independence


Minimum size of elements: 1 mm


a cross section of the mesh


Output



SST simulation

CFD simulation (E. Lam)

Measurement (V. Andavan, A. Vamvakas)

- horizontal air flow 0.4 m/s

Aim of the Finite Element Method (FEM) simulation is to study heat distribution and dissipation in CLIC module T0#2.

Thermal gradients originate from several sources: RF structures produce heat, components are cooled by water and air flow, ambient temperature varies

B: : MODULE TO_2 Temperature 3


Type Temperatur Unit °C

> 47.652 Mat 44.856 42.061 39.265 36.47 33.674 28.083 25.287 22.492 Min

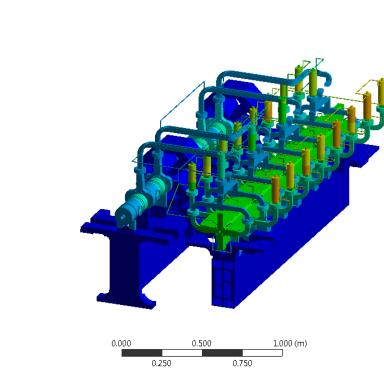
Time 1 12/12/2017 18:34

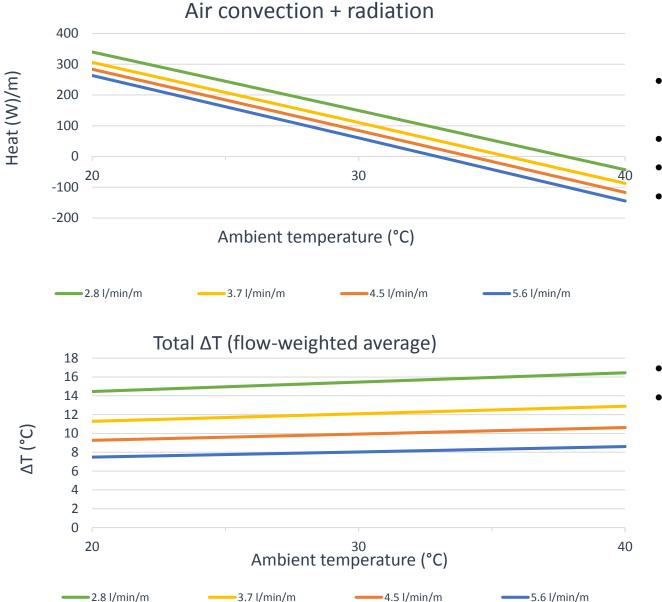
The modelling is done using ANSYS 17.2 Workbench. The FEM simulation of includes:

- 3D CAD geometry
- Steady-state thermal analysis (followed by Static structural analysis)
- Isotropic materials: OFE copper, aluminium, stainless steel, SiC
- Thermal loads
- Ambient temperature
- Thermal fluid (water)
- Convection, radiation, conduction

FEA thermal simulations for TBM

- ANSYS Thermal steady-state analysis
- T0#2 Module
- Run time: ~1hr
- Total heating power 7354 W
- Cooling water 27 °C, 1.3 l/min
- Ambient T = 20...40 °C
- Convection HTC_air = 7.5 W/m^2K
- Radiation to surrounding "space" (T = 18°C) (no surface-to-surface effect)

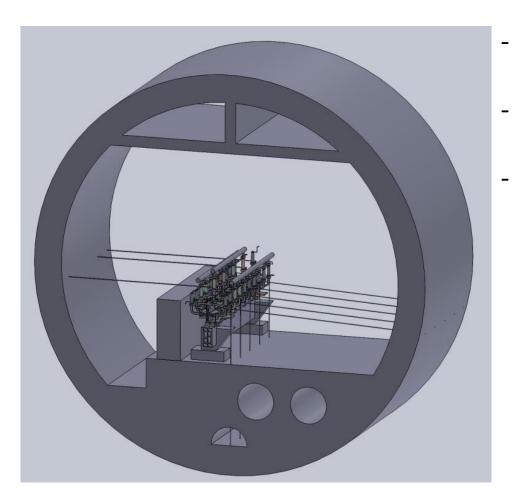

		Heating p		
CL	20x	161	3220	
PETS	4x	88	352	
SAS	4x	860	3440	
DBQs	2x	171	342	
Total			7354	W


B: STEP 0: MODULE ambient30

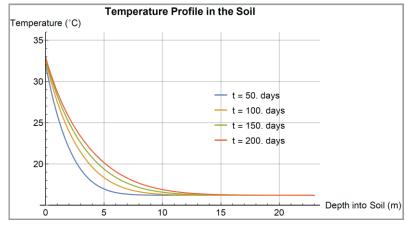
mperature 3 pe: Temperature

> 40.074 37.706 35.339 32.972

30.605 28.238



- Higher flow lowers component T (but not below 27°C)
- Higher flow lowers heat to air
- Higher ambient T lowers heat to air
- Zero emission point


- Higher flow lowers ΔT of water!
- Higher ambient T increases ΔT of water!

-> to our colleagues from Cooling&Ventilation

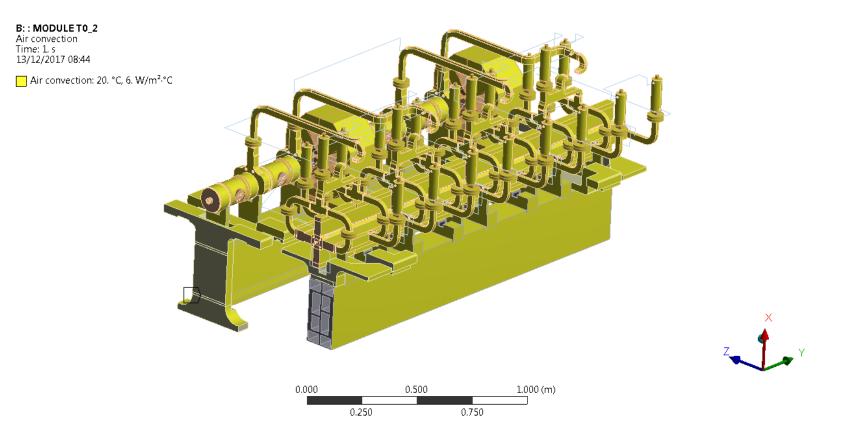

In the mean time...

- Entire main beam part of the module into CFD for getting a glimpse of longitudinal effects
- Modeling of tunnel wall and soil for evaluation of feasibility of temperature stability requirements
- Machine operation transitioning states



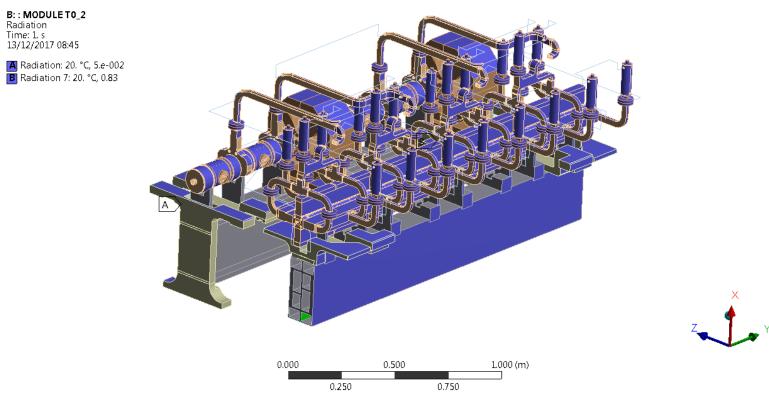
Analytical model in development for assumptions that can be made for the tunnel wall in steady-state CFD or FEA simulations

16

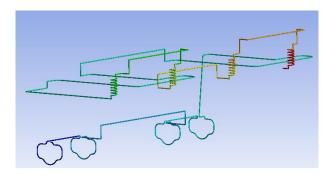


Module: Air convection

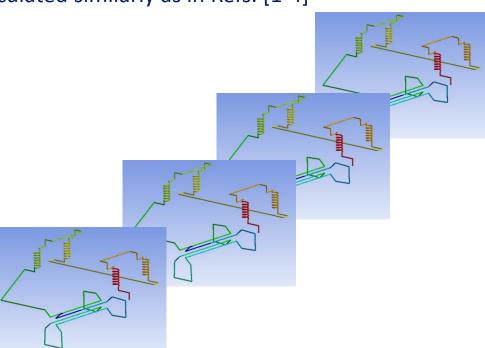
Convection to air


- Constant heat transfer coefficient 6 W/(m² °C)

Module: Thermal radiation


Radiation to surrounding space (ambient temperature):

- Emissivity for copper, aluminium and stainless steel (0.05) and SiC (0.83)
- No surface-to-surface effects



Module: Water cooling

- 5 separate cooling circuits
- Water heat transfer coefficient is calculated similarly as in Refs. [1-4]
- Flow can be varied
- Inlet temperature can be varied

2 double PETS and 4 RF loads on series

SAS and 4CLs on series