

Radiation Protection studies for CLIC

M. Widorski, HSE-RP

Radiation hazards

	Radiation Hazard	Examples		
1	particle beams	prompt stray radiation from beam losses through shielding or direct		
		exposure after intrusion into prohibited areas		
2	activated solids	accelerator tunnel equipment (magnets, supports, collimators,		
		infrastructure equipment), tunnel walls, rock		
3	activated dispersed solids	corrosion of activated objects in accelerator areas or workshops		
4	activated or contaminated liquids	water in cooling circuits in accelerator areas, ground water		
5	activated air or gases	cooling gases and air in accelerator areas		
6	radioactive aerosols	radioactive airborne particles from mechanical operations or airborne		
		radioactive dust		
7	radioactive surface contamination	Physico-chemical works on activated solids, dispersed radioactive		
		sources		
8	radioactive sources	calibration sources, test adapters (for the purpose to use the radioactive		
		properties)		
9	X ray generators	radiography generators		
10	parasitic X ray generators	klystrons, RF cavities		
11	naturally occurring radioactive materials	Radon, U, Th, ⁴⁰ K, TENORM/NORM		

Hazards mainly affecting civil engineering design → crucial to be considered in the PiP

RP relevant study topics

Residual dose rate from activation or activity levels

Potential and known loss locations

Drive beam and main beam dumps

Collimation systems

Drive beam PET structures

Positron production target

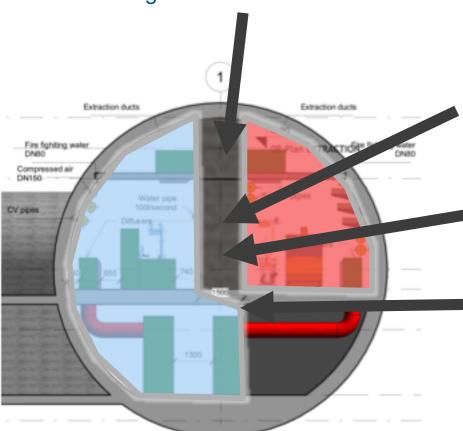
Ventilation systems

Water cooling circuits

Stray radiation during beam operation

Connections between beam/klystron tunnel to service caverns and access galleries (definition of accessible perimeter)

Klystron tunnel during RF power operation (w/o beam)



Radiation Area Classification matrix

	Beam tunnel	Klystron tunnel	Service cavern
Beam operation	Prohibited	Prohibited	
RF power operation	Prohibited	Supervised Radiation Area	Non-designated area
no RF power to cavities, klystron-only operation or shutdown	Supervised/Controlled Radiation Area	Supervised Radiation Area	

RF power operation

Ventilation duct (ø120 cm) crossing at each alcove

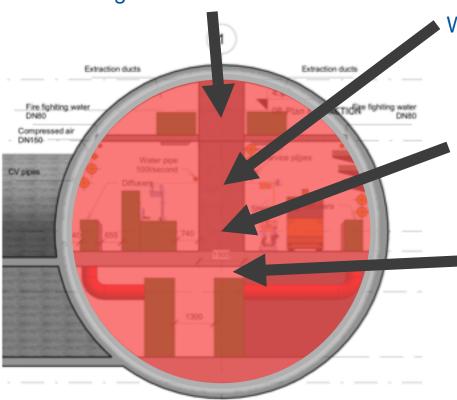
Source term: X ray production from RF power (600 MeV, e⁻ dark current + breakdowns)

Waveguide ducts (ø10 cm) every 2 m

Passage between klystron and beam tunnel to be confirmed

Closure of shielding gap (structural stability?)

Shielding will confine X radiation to beam tunnel, such to keep klystron tunnel accessible.



HSE Occupational Health & Safety and Environmental Protection Unit

Beam operation

Source term: Continuous beam loss (upper conservative limit: 10⁻³) & incidental beam loss sustained for a short time

Ventilation duct (ø120 cm) crossing at each alcove

Waveguide ducts (ø15 cm) every 2 m

Passage between klystron and beam tunnel to be confirmed

Closure of shielding gap (structural stability?)

Shielding will confine activation to beam tunnel, but R2E issues klystron tunnel to be addressed.

HSE Occupational Health & Safety and Environmental Protection Unit

