PhD Meeting 8 Sep 2017

Discussing last meeting's action points

- single vs double precision was not checked
- not an easy task to accomplish in few weeks
- a dirty estimation would be sufficient
- There are libraries for custom precision
- approximate computing is a hot topic for CS

 custom precision to minimize power
- · We need sudo rights to access power consumption counters etc
- AP Konstantinos check with the system admin what we can do
- our matrices are not sparse, we don't need to optimize them for memory usage
- idea for a histogram with a variable width slicing is interesting

Konstantinos presentation

- Overview of Blond main functions and datastructures
- test-cases profiling:
 - \circ LHC
 - Not doing well in scalability
 - Some functions need to be optimized
 - This could be a nice story for a paper
 - Thread interference should be considered
 - PSB
 - Scaling good enough (42x theoretical peak speedup)
 - amdhal's law is not the best approximation as it doesn't consider memory BW
 - Roofline model is a better approximation
 - Computational intensity
 - memory BW
 - Roofline model has not been yet studied for multi-node machines
- Code optimizations
 - Histogram:
 - loop tiling → better cache usage + vectorization
 - speculation
 - 20-25% speedup
 - linear interpolation:
 - loop tiling
 - precalculating a part of the loop to save some computations
 - 35-40% speedup
 - \circ in a paper I will have to prove that the threads to CPUs configuration is the optimal
 - numa_ctl to control thread configuration and memory allocations
 - AP Overlapping kick and drift would improve the memory usage
- python PAPI library \rightarrow let us extract processor counters and metrics, can be useful in the future
- ISCAS
 - Deadline: October 16
 - Size: 4 Pages (only)

- Contents:
 - coarse analysis of the BLonD algorithm
 - Explain how BlonD utilizes heavily DSP and signal processing
 - Optimizations: mutli-threading + vectorization only
 - **AP** integrate the GPU parts in the code
 - Considering only the OFTB module might be better for the size of the paper
- next meeting 29th September