First you can add text to any field either by declaring to be text (use the menu above) or by placing it between (* text text *)

Input press [shift]+[return]

```
In[\bullet]:= 2 + 2
Out[\bullet]= 4
```

Notice the In[] and Out[] labels. these can be used to refer back to these items. % refers back to the last output

```
In[\bullet]:= \% + 5
Out[\bullet]= 9
```

Standard symbols work for multiplication, subtraction and division.

$$ln[@]:= 5 + 4 * 5 - 4 / 6$$
Out[@]= $\frac{73}{3}$

Power is indicated by ^ symbol.

$$ln[*]:= (5-3)^2/3$$
Out[*]= $\frac{4}{3}$

There are a vast number of functions built in. Some of them are usual, and some require multiple inputs. Functions are invoked by [].

Some irrational numbers are represented by symbols.

-1.0

Be careful with brackets. Mathematica helps you by highlighting the related brackets.

$$In[*]:= (1 + Sqrt[5]) / (1 + 1)$$

$$Out[*]:= \frac{1}{2} (1 + \sqrt{5})$$

$$In[*]:= (1 + Sqrt[5] / 1 + 1)$$

$$Out[*]:= 2 + \sqrt{5}$$

$$In[*]:= Plot[Sin[x], \{x, 0, 3 Pi\}]$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

Data is represented in lists indicated by {...}. There can be lists of lists. They can contain numbers, variables, text, and even functions. There are many operations on lists.

```
ln[@]:= \{1, 2, 3\}
Out[\bullet]= {1, 2, 3}
ln[*]:= \{1, 2, 3\} + 4
Out[\bullet] = \{5, 6, 7\}
```

Get an element of a list. use [[]]

```
ln[\bullet]:= \{1, 2, 3\}[[2]]
Out[•]= 2
```

construct lists with simple commands

```
In[*]:= Range [10]
Out[\bullet]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
 In[*]:= Table[1/i, {i, 1, 20}]
\textit{Out[*]=} \ \left\{1, \, \frac{1}{2}, \, \frac{1}{3}, \, \frac{1}{4}, \, \frac{1}{5}, \, \frac{1}{6}, \, \frac{1}{7}, \, \frac{1}{8}, \, \frac{1}{9}, \, \frac{1}{10}, \, \frac{1}{11}, \, \frac{1}{12}, \, \frac{1}{13}, \, \frac{1}{14}, \, \frac{1}{15}, \, \frac{1}{16}, \, \frac{1}{17}, \, \frac{1}{18}, \, \frac{1}{19}, \, \frac{1}{20}\right\}
```

Some rules with numbers. Exact input gets exact output. Decimal input will get approximate output.

```
ln[\bullet] := \frac{1}{3} + \frac{2}{6}
Out[\bullet] = \frac{2}{2}
 ln[\bullet] := 0.3333 + 1/3
Out[*]= 0.666633
```

N[..] function will convert exact output to approximate. ScientificForm[..] will convert to scientific notation output.

$$In[=]:= N[1/3+1/2]$$
 $Out[=]:= 0.833333$
 $In[=]:= ScientificForm[0.00082712/10132.0898]$
 $Out[=]/ScientificForm=$
 8.16337×10^{-8}

You can use variables to represent almost anything. Usually lower case letters are used as variables. Upper cases for functions and built in constants.

$$ln[@]:= \left(x+2\right) / 5$$

$$Out[@]= \frac{2+x}{5}$$

Use space or * to indicate multiplication

$$ln[*]:= (x y + 55 * x + 14) / y^3$$

$$Out[*]= \frac{14 + 55 x + x y}{y^3}$$

use /. and -> to make substitutions on the fly.

$$ln[*]:= (x y + 55 * x + 14) / y^3 /. \{y \to 3, x \to 4\}$$

$$Out[*]:= \frac{82}{9}$$

variables can be assigned with = . Use; to have multiple statements in one executation.

$$ln[*] = x = 4; y = 5; (x + y) / 4$$

$$Out[*] = \frac{9}{4}$$

use Clear[] to clear assignment

$$In[\circ] := Clear[x]; (x + y) / 4$$

$$Out[\circ] := \frac{5 + x}{4}$$

Use := to create definitions for custom functions. Notice the x_ which means x is a pattern to be substituted. := means that arguments that are passed to f get substituted on the right.

```
ln[\cdot]:= f[x_] := Sin[x] * Exp[x];
         f[y]
Out[\circ] = \mathbb{e}^5 \operatorname{Sin}[5]
```

A little bit of Algebra.

First get used to the idea of the three different "equal" signs.

- = means assignment. Right side is assigned to the symbol on the left := means a definition of a function to which arguments are passed == really means a equal sign that is used in equations. The entire equation becomes an expression that either true or false.
- Factor an equation, simplify, or make partial fractions separation.

```
In[*]:= Factor[x^2 + 2 x + 1]
Out[\bullet]= (1 + x)^2
ln[\cdot]:= Simplify [x^2 (1-y^2) * x / (x^2+2x+1)]
Out[•]= -\frac{24 x^3}{(1+x)^2}
ln[@] := Apart[(x^2 - 1) / (x^2 + 2x + 1)]
Out[\bullet] = 1 - \frac{2}{1 + x}
 ln[\bullet] := 2 + 2 == 4
Out[*]= True
```

This is an equation

```
ln[\bullet] := 1 + z == 5
Out[\bullet] = 1 + z == 5
```

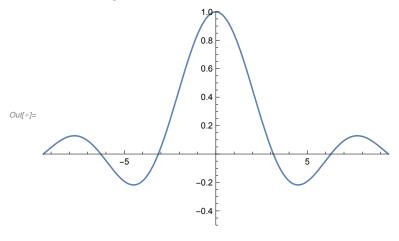
How do we solve quadratic equations etc. Solve produces answers in the form of substitution rules. Nsolve gives numerical answers in case the answer is difficult to get.

```
ln[\cdot]:= Solve[x^2+6x-6==0, x]
Out[@]=\left\{\left\{X\rightarrow-3-\sqrt{15}\right\},\left\{X\rightarrow-3+\sqrt{15}\right\}\right\}
ln[@]:= NSolve[x^3+6x-6 == 0, x]
Out = \{ \{ x \rightarrow -0.442311 - 2.5665 i \}, \{ x \rightarrow -0.442311 + 2.5665 i \}, \{ x \rightarrow 0.884622 \} \}
```

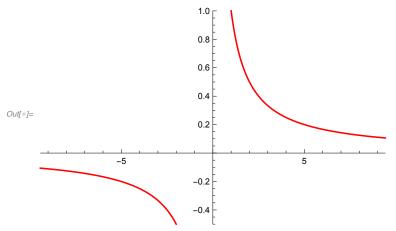
How about system of equations!

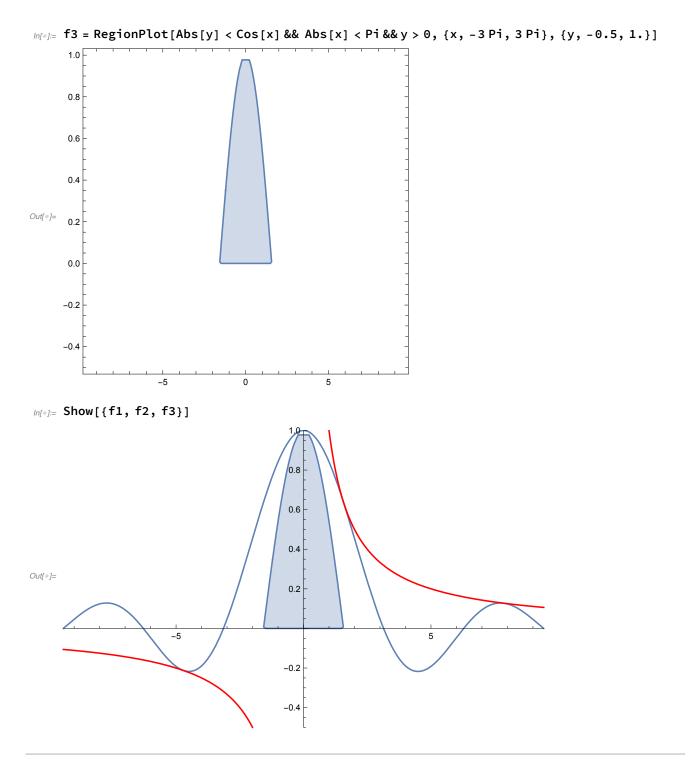
```
ln[\bullet]:= Solve[{x^2+z==0, 8x-5==z}, {x, z}]
Out[*]= \left\{ \left\{ x \to -4 - \sqrt{21} , z \to -37 - 8\sqrt{21} \right\}, \left\{ x \to -4 + \sqrt{21} , z \to -37 + 8\sqrt{21} \right\} \right\}
```

How about plotting functions? The most basic command is plot. Plot has a huge number of options for making fancy looking pictures or overlapping plots.


In[*]:= **? Plot**

```
Plot[f, {x, x_{min}, x_{max}}] generates a plot of f as a function of x from x_{min} to x_{max}.
Plot[\{f_1, f_2, ...\}, \{x, x_{min}, x_{max}\}] plots several functions f_i.
Plot[\{..., w[f_i], ...\}, ...] plots f_i with features defined by the symbolic wrapper w.
Plot[..., \{x\} \in reg] takes the variable x to be in the geometric region reg. \gg
```


In[*]:= ? RegionPlot


RegionPlot[pred, {x, x_{min} , x_{max} }, {y, y_{min} , y_{max} }] makes a plot showing the region in which pred is True. \gg

 $log[0] = f1 = Plot[Sin[x]/x, \{x, -3Pi, 3Pi\}, PlotRange \rightarrow \{\{-3Pi, 3Pi\}, \{-0.5, 1.0\}\}]$

 $ln[\cdot]:= f2 = Plot[1/x, \{x, -3Pi, 3Pi\},$ PlotStyle \rightarrow Red, PlotRange \rightarrow {{-3 Pi, 3 Pi}, {-0.5, 1.0}}]

We will do more with plotting over the next several units. There is almost infinite flexibility and you can also write manually on the plots if you want to.