First you can add text to any field either by declaring to be text (use the menu above) or by placing it between (* text text *)

```
Input press [shift]+[return]
```

```
\operatorname{ln}[0]:= 2+2
Out[\rho]= 4
```

Notice the $\operatorname{In}[]$ and Out[] labels. these can be used to refer back to these items. \% refers back to the last output

```
ln[0]:= % + 5
```

Out $[0]=9$
Standard symbols work for multiplication, subtraction and division.
$\ln [-]:=5+4 * 5-4 / 6$
Out $[\theta]=\frac{73}{3}$
Power is indicated by ^ symbol.
mptr $(5-3)^{\wedge 2 / 3}$
Out $[0]=\frac{4}{3}$
There are a vast number of functions built in. Some of them are usual, and some require multiple inputs.
Functions are invoked by [].

```
mn[s]:= Min[3, 4]
Out[0]= 3
In[0]:= GCD[24, 28]
Out[0]= 4
```

Some irrational numbers are represented by symbols.

```
mn[0]:= Sin[Pi/2]
```

Out $[0]=1$
$\ln [0]=\operatorname{Exp}[1]$
Out $[0]=\mathbb{E}$
Be careful with brackets. Mathematica helps you by highlighting the related brackets.
$\ln [\rho]:=(1+\operatorname{Sqrt}[5]) /(\mathbf{1}+\mathbf{1})$
Out $0=\frac{1}{2}(1+\sqrt{5})$
$\ln [\rho]=(1+\operatorname{Sqrt}[5] / \mathbf{1}+1)$
Out $[0=2+\sqrt{5}$
$\ln [0]=\mathrm{Plot}[\operatorname{Sin}[\mathrm{x}],\{\mathrm{x}, 0,3 \mathrm{Pi}\}]$

Data is represented in lists indicated by \{...\}. There can be lists of lists. They can contain numbers, variables, text, and even functions. There are many operations on lists.

$\ln [0]:=\{1,2,3\}$
Out $0=\{1,2,3\}$
$\ln [\theta]:=\{1,2,3\}+4$
Out $0=\{5,6,7\}$

Get an element of a list. use [[]]
$\operatorname{mn}[0]:=\{1,2,3\}[[2]]$
Out $[0=2$
construct lists with simple commands
$\ln [0]=$ Range [10]
Out $[0=\{1,2,3,4,5,6,7,8,9,10\}$
$\ln \left[\sigma^{2}:=\right.$ Table[1/i, \{i, 1, 20\}]
Out [0] $=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \frac{1}{11}, \frac{1}{12}, \frac{1}{13}, \frac{1}{14}, \frac{1}{15}, \frac{1}{16}, \frac{1}{17}, \frac{1}{18}, \frac{1}{19}, \frac{1}{20}\right\}$

Some rules with numbers. Exact input gets exact output. Decimal input will get approximate output.

$$
\begin{aligned}
& \ln [\theta]=\frac{1}{3}+\frac{2}{6} \\
& \text { Out }[0]=\frac{2}{3} \\
& \ln [0]=0.3333+1 / 3 \\
& \text { Out }[0]=0.666633
\end{aligned}
$$

N[..] function will convert exact output to approximate. ScientificForm[..] will convert to scientific notation output.
$\operatorname{In}[0]:=N[1 / 3+1 / 2]$
Out $[0]=0.833333$
$\operatorname{In}[0]:=$ ScientificForm[0.00082712 / 10132.0898]
Out[0]//ScientificForm=
8.16337×10^{-8}

You can use variables to represent almost anything. Usually lower case letters are used as variables. Upper cases for functions and built in constants.

```
ln}[\rho]:= (x+2)/
Out[0]= 午 (x
```

Use space or * to indicate multiplication
$\ln [0]:=(x y+55 * x+14) / y^{\wedge} 3$
Out $[0]=\frac{14+55 x+x y}{y^{3}}$
use /. and -> to make substitutions on the fly.
$\ln [0]:=(x y+55 * x+14) / y^{\wedge} 3 / \cdot\{y \rightarrow 3, x \rightarrow 4\}$
Out $0=\frac{82}{9}$
variables can be assigned with $=$. Use ; to have multiple statements in one executation.
$\ln [0]:=x=4 ; \quad y=5 ;(x+y) / 4$
Out $[0]=\frac{9}{4}$

```
    use Clear[] to clear assignment
In[\rho]:= Clear [x]; (x+y)/4
Out[0]= 支吕
```

 Use := to create definitions for custom functions. Notice the x _ which means x
 is a pattern to be substituted. := means that arguments that are passed to \(f\) get
 substituted on the right.
 $\ln [\rho]:=f\left[x_{-}\right]:=\operatorname{Sin}[x] * \operatorname{Exp}[x] ;$
f[y]
Out $[0]=e^{5} \operatorname{Sin}[5]$

A little bit of Algebra.

First get used to the idea of the three different "equal" signs.
= means assignment. Right side is assigned to the symbol on the left
:= means a definition of a function to which arguments are passed $==$ really means a equal sign that is used in equations. The entire equation becomes an expression that either true or false.

Factor an equation, simplify, or make partial fractions separation.

```
mn[v]:= Factor[ [ ^^2+2x+1]
Out[0]= (1+x)}\mp@subsup{}{}{2
mn[0]:= Simplify[ (x^2 (1- y^2) * x / (x^2 + 2 x + 1)]
Out[0]= - - 24 x (1+x\mp@subsup{)}{}{2}
In[\rho]:= Apart[(x^2-1)/(x^2+2x+1)]
Out[0]= 1-- 2
ln[0]:= 2+2 == 4
Out[0]= True
```

This is an equation

```
mm(v)= 1+z== 5
```

out $[$ ol $=1+z=5$

How do we solve quadratic equations etc. Solve produces answers in the form of substitution rules. Nsolve gives numerical answers in case the answer is difficult to get.

```
In[\rho]:= Solve[x^2+6x-6 == 0, x]
```

Out $[0]=\{\{x \rightarrow-3-\sqrt{15}\},\{x \rightarrow-3+\sqrt{15}\}\}$
$\operatorname{In}[0]=$ NSolve $\left[x^{\wedge} 3+6 x-6=0, x\right]$
Out $0=\{\{x \rightarrow-0.442311-2.5665$ i $\},\{x \rightarrow-0.442311+2.5665$ ii $\},\{x \rightarrow 0.884622\}\}$

How about system of equations !
$\ln [0]:=\operatorname{Solve}\left[\left\{x^{\wedge} 2+z=0,8 x-5==z\right\},\{x, z\}\right]$
Out $[0]=\{\{x \rightarrow-4-\sqrt{21}, z \rightarrow-37-8 \sqrt{21}\},\{x \rightarrow-4+\sqrt{21}, z \rightarrow-37+8 \sqrt{21}\}\}$
How about plotting functions? The most basic command is plot. Plot has a huge number of options for making fancy looking pictures or overlapping plots.
$\ln [0]=$? Plot
$\operatorname{Plot}\left[f,\left\{x, x_{\min }, x_{\max }\right\}\right]$ generates a plot of f as a function of x from $x_{\text {min }}$ to $x_{\text {max }}$.
$\operatorname{Plot}\left[\left\{f_{1}, f_{2}, \ldots\right\},\left\{x, x_{\text {min }}, x_{\text {max }}\right\}\right]$ plots several functions f_{i}.
Plot $\left[\left\{\ldots, w\left[f_{i}\right], \ldots\right\}, \ldots\right]$ plots f_{i} with features defined by the symbolic wrapper w.
Plot $[\ldots,\{x\} \in r e g]$ takes the variable x to be in the geometric region reg. >>
$\ln [0]:=$? RegionPlot
RegionPlot $\left[\right.$ pred, $\left.\left\{x, x_{\min }, x_{\max }\right\},\left\{y, y_{\min }, y_{\max }\right\}\right]$ makes a plot showing the region in which pred is True. >>
$\ln [\rho]=\mathrm{f} 1=\mathrm{Plot}[\operatorname{Sin}[\mathrm{x}] / \mathrm{x},\{\mathrm{x},-3 \mathrm{Pi}, 3 \mathrm{Pi}\}, \mathrm{PlotRange} \rightarrow\{\{-3 \mathrm{Pi}, 3 \mathrm{Pi}\},\{-0.5,1.0\}\}]$

$\ln [\rho]=\mathrm{f} 2=\mathrm{Plot}[1 / \mathrm{x},\{\mathrm{x},-3 \mathrm{Pi}, 3 \mathrm{Pi}\}$,
PlotStyle \rightarrow Red, PlotRange $\rightarrow\{\{-3 \mathrm{Pi}, 3 \mathrm{Pi}\},\{-0.5,1.0\}\}]$

$\ln [0]:=\mathrm{f} 3=\operatorname{RegionPlot}[\operatorname{Abs}[y]<\operatorname{Cos}[\mathrm{x}] \& \& \operatorname{Abs}[\mathrm{x}]<\operatorname{Pi} \& \& y>0,\{\mathrm{x},-3 \mathrm{Pi}, 3 \mathrm{Pi}\},\{y,-0.5,1\}$.

$\ln [0]:=\operatorname{Show}[\{\mathbf{f 1}, \mathbf{f 2}, \mathbf{f 3}\}]$

Out $[\cdot]=$

We will do more with plotting over the next several units. There is almost infinite flexibility and you can also write manually on the plots if you want to.

