First you can add text to any field either by
declaring to be text (use the menu above) or by
placing it between (* texttext *)

Input press [shift]+[return]

)= 2+ 2

outfe}= 4

Notice the In[] and Out[] labels. these can be used to refer
back to these items. % refers back to the last output

nfj= %+5

outf-j]= 9

Standard symbols work for multiplication, subtraction
and division.

Infe]:= 5+4*5—4/6

73
outfe]= —

Power is indicated by * symbol.

Infe]:= (5—3) "2/3
4
3

Out[]=

There are a vast number of functions built in. Some of
them are usual, and some require multiple inputs.
Functions are invoked by [].



2 | unit2-basics.nb

= Min[3, 4]

outfj= 3

n-1= GCD[24, 28]

outf+]= 4

Some irrational numbers are represented by symbols.

n= Sin[Pi /2]

outfe}= 1

1= EXp[1]

Out[*]= €
Be careful with brackets. Mathematica helps you by highlighting the related
brackets.

n= (1+Sqre[51) / (1+1)

out[+]= i (l+\/?)

n- (1+Sqre[5]1 /1+1)
outf+]= 2+\/?
m-1= Plot[Sin[x], {X, @, 3Pi}]

1.0

051

Outf«]= P N S |




unit2-basics.nb | 3

Data is represented in lists indicated by {...}. There can be
lists of lists. They can contain numbers, variables, text,
and even functions. There are many operations on lists.

1= {1, 2, 3}
our-)= {1, 2, 3}

mj= {1y 2y 3} +4

oui-]= {5, 6, 7}

Get an element of a list. use [[]]
mep= {1y, 2, 3}Y[[2]]
outf+]= 2
construct lists with simple commands

n-1= Range[10]
our= {1, 2,3,4,5,6,7,8,9, 10}

InfeJ:= Table[l/-i, {i, 1, 20}]

Some rules with numbers. Exact input gets exact output.
Decimal input will get approximate output.

1 2

Infe= — + —

2
Out[*]= —

n- ©.3333+1/3
our - 0.666633



4 | unit2-basics.nb

N[..] function will convert exact output to approximate.
ScientificForm[..] will convert to scientific notation output.

Infe]:= N[1/3+1/2]

ouf-1= ©.833333

- ScientificForm[0.00082712 /10 132.0898]
Outf{ = J//ScientificForm=

8.16337 x 1078

You can use variables to represent almost anything.
Usually lower case letters are used as variables. Upper
cases for functions and built in constants.

Infe]:= (X+2) /5

2+ X

Outf#]=

Use space or * to indicate multiplication

ne- (Xy+55%x+14) [yA3

14 +55x+Xy

Outf+}= 3
y

use /. and -> to make substitutions on the fly.

ne- (Xy+55%x+14) [yA3 /. {y >3, x> 4}

82
Out[¢]= —

variables can be assigned with =. Use ; to have multiple statements in one
executation.

= X=43 y=55 (X+y) /4

9
Out[¢]= —



unit2-basics.nb | 5

use Clear[] to clear assignment

m= Clear[x]y (x+Yy) /4
5+ X

Outf#]=

Use := to create definitions for custom functions. Notice the x_ which means x
is a pattern to be substituted. := means that arguments that are passed to f get
substituted on the right.

mep= FIX_1 t= Sin[x] = Exp[x];

flyl

oui-l- € Sin[5]

A little bit of Algebra.
First getused totheideaof the three different “equal” signs.

= means assignment. Right side is assigned to the symbol on the left

:= means a definition of a function to which arguments are passed
==really means a equal sign that is used in equations. The entire equation
becomes an expression that either true or false.

Factor an equation, simplify, or make partial fractions separation.

n)= Factor[x*2 +2 x +1]

ourl= (1 +x)2
o= SAmpLify [xA2 (1-yr2) «+x/ (x"2+2x+1)]

24 x3

(1+x)2

Out[#]= —

- Apart[(xf2-1) / (x"2+2x+1)]
2

outfej= 1 -
1+X

)= 2+2 =4

ouf-]= True



6 | unit2-basics.nb

This is an equation
)= 1+ 2Z ==

ouf]= 1+z =5

How do we solve quadratic equations etc. Solve produces answers in the form
of substitution rules. Nsolve gives numerical answers in case the answer is
difficult to get.

n-1= Solve[x"2+6 x -6 =0, x]

our - {{x>-3-4/15}, {x>-3+/15 }}

1= NSolve[xA3 +6 x -6 =0, X]

ouf-]= {{Xx—>-0.442311-2.56651i}, {x > -0.442311+2.56651i}, {x > 0.884622}}
How about system of equations !

n)= Solve[{x"2+z =0, 8x -5 == 2z}, {x, z}]

Outf+}= {{Xe—4—\/21 , 2> -37-8+v21 }, {Xe—4+\/21 ,Z2->-37T+8+V21 }}

How about plotting functions ? The most basic command is plot. Plot has a
huge number of options for making fancy looking pictures or overlapping plots.

n-1= 2 Plot

Plot[f, {x, Xmins Xmax}] geNerates a plot of f as a function of x from x,,,;, t0 Xy
Plot[{f1, f2, -}, £, Ximin, Xmax}] PlOts several functions f;.

Plot[{..., w[f], ...}, ...] plots f; with features defined by the symbolic wrapper w.
Plot[..., {x} e reg] takes the variable x to be in the geometric region reg. >

n-- ? RegionPlot

RegionPlot[pred, {x, Xmins Xmax}s Vs Ymin> Ymax}] Makes a plot showing the region in which predis True. >



unit2-basics.nb | 7

n- f1 = Plot[Sin[x] /X, {x, -3 Pi, 3Pi}, PlotRange -» {{-3Pi, 3Pi}, {-0.5, 1.0}}]

1,

Out[#]=

m-1= f2 = Plot[1/ x, {x, -3 Pi, 3Pi},
PlotStyle -» Red, PlotRange -» {{-3Pi, 3Pi}, {-0.5, 1.0}}]

1.0

0.8

0.6

0.4

Outf#]=
0.2

T T T T

T

T

LI S S S s e e e

T

) L ! L
\y

-5

T

T

T



8 | unit2-basics.nb

1= f3 = RegionPlot[Abs[y] < Cos[x] && Abs[x] < Pi &&y > 0, {x, -3 Pi, 3Pi}, {y, -0.5, 1.}]

1.0 i
0.8 ;
0.6 ;
0.4 E
Out[#]=

0.0

1= Show[{fl, f2, f3}]

Outf#]=

L L A L I L A L L L L
. | \7
-0.2

We will do more with plotting over the next several units.
There is almost infinite flexibility and you can also write
manually on the plots if you want to.



