
In this unit we are going to do some problems in electricity 

and magnetism.  We will do a few problems in calculating 

static fields, and then   a couple of  circuits.  

As usual, units are very important and so we need to setup 

the unit system first.  

I prefer to use, Volts, Coulombs, Meters, and Seconds, and 

Tesla
Electric field is in units of Volts/Meter or 
Newton/Coulomb.  Current is Amperes = Coulombs/sec.  

Two charges q and -q are at locations (0, +1/2) and (0, -1/2)   meters.  Calculate 

the electric field.  
First we calculate the potential and then take its gradient.  

Setup the constants. mu0 is the Magnetic Permeability and kcoulomb is 

Coulombs constant.  kcoulomb = 1/(4 Pi epsilon)  

������ mu0 = QuantityMagnitude[
UnitConvert[Quantity[1, "MagneticConstant"], "Tesla Meter/Ampere"]]

������
π

2500000

������ kcoulomb = N[QuantityMagnitude[
UnitConvert[ Quantity[1, "CoulombsConstant"], "Newton * meter^2/Coulomb^2"]]]

������ 8.98755 × 109



Let’s check that these constants are correctly defined.  1/Sqrt[epsilon * mu0]  
should be the speed of light.  This should be in meters/second.  

ϵ0 = 1  4 Pi * kcoulomb;

clight = 1  Sqrt[mu0 * ϵ0]

������ 2.99792 × 108

Let’s do a problem of the electric field between two charges.  

������ q1 = 2 * 10^-6 ; (* units are Coulomb *)

q2 = -10^-6;

p1 = 0, +1  2, 0; (* make it 3 dimensional*)

p2 = 0, -1  2, 0; (* units are in meters *)

dipole [x_, y_, z_] :=

kcoulomb * q1  Sqrt(x - p1[[1]])^2 + y - p1[[2]]^2 + z - p1[[3]]^2 +

q2  Sqrtx - p2[[1]]^2 + y - p2[[2]]^2 + z - p2[[3]]^2;

(* Potential *)

r = {0, 2, 0};
dipole[r[[1]], r[[2]], r[[3]] ]

������ 8388.38

������ ? ContourPlot

ContourPlot[ � , {�, ����, ����}, {�, ����, ����}] generates a contour plot of � as a function of � and �.
ContourPlot[ � == �, {�, ����, ����}, {�, ����, ����}] plots contour lines for which � = �.
ContourPlot[{ �� == ��, �� == ��,…}, {�, ����, ����}, {�, ����, ����}] plots several contour lines.
ContourPlot[…, {�, �} ∈ ���] takes the variables {�, �} to be in the geometric region ���.  
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������ c1 = ContourPlot[dipole[x, y, 0], {x, -1, 1}, {y, -1, 1}, Contours → 30]

������
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������ ? Grad

Grad[ � , {��,…, ��}] gives the gradient (∂ � /∂�1,…, ∂ � /∂��).
Grad[ � , {��,…, ��}, �����] gives the gradient in the coordinates �����. 

������ efield[x_, y_] := Grad[dipole[x, y, 0], {x, y}] // Evaluate

������ efield[0, 0]

������ {0., 107851.}
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������ v1 = VectorPlot[efield[x, y], {x, -1, 1},
{y, -1, 1}, VectorPoints → Automatic, StreamPoints → 20]

������

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

������ Show[c1, v1]

������
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What about the strength of the electric field between the two charges along the 

line in x ? 

������ Norm[efield[0, 0]]

������ 107851.

������ Norm[efield[-1, 0]]

������ 11593.6

������ Plot[Norm[efield[x, 0]], {x, -2, 2}, Frame → True,
FrameLabel → {"Distance meters", "Field Volts/meter"},
LabelStyle → {Medium, Italic}]

������
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Magnetic Field calculations are more difficult because 

they need calculus and complicated integrals.  But let’s 

just calculate the field of a wire using basic formulas.  

 The magnetic field of a wire is in a circle around the wire 

with the field dropping as 1/distance from wire.  How can 

we represent this ? Easiest to do this in cylindrical 
coordinates.  
������ mu0 (* the magnetic permeability *)

������
π

2500000

������ I0 = 1; (* current in the wire *)

B0 = mu0 * I0  2 Pi; (* this is in Tesla * meter *)

������ BwireField[x_, y_, z_] := B0 * y  x^2 + y^2, -B0 * x  x^2 + y^2, 0

������ BwireField[10, 0, 0]

������ 0, -
1

50000000
, 0

������ Plot[Norm[BwireField[x, 0, 0]], {x, 0.1, 10}, Frame → True,
FrameLabel → {"Radius meter", "B Field Tesla"}, LabelStyle → {Medium, Italic}]

������

0 2 4 6 8 10

5.×10-8

1.×10-7

1.5×10-7

2.×10-7

Radius meter

B
F
ie
ld
T
es
la

6 ���  unit4.nb



������ VectorPlot3D[BwireField[x, y, z], {x, -1, 1.}, {y, -1, 1}, {z, -2, 2},
VectorPoints → 10, VectorStyle -> Arrowheads[0.01], VectorScale → Large ]

������

Now we will do some circuits.  

The most important non-trivial circuit is an RC filter.  
This is where a resistor and capacitor are in series and we 

have to measure the voltage in between.  

The units are Volts, Amperes, Ohms, and Farads. 
We will setup the input voltage to be an oscillating voltage
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This is a little more advanced for High School, but it is not 
difficult to teach with Mathematica.  
������ Clear[R1]; Clear[C1]; Clear[V0]; Clear[V];

R1 = 1000; (* Ohm *)

C1 = 10^-6; (* Farad *)

V0 = 1 ; (* Volts *)

omega = 2 * Pi * 600; (* The frequency is 600 Hz *)

V[t_] := V0 * Sin[omega * t];

The charge on the capacitor of q[t]  changes according the the current.  The 

input voltage must be equal to the sum of the voltages across R and C.  

������ eq1 = V[t] ⩵ R1 * D[q[t], t] + q[t]  C1;

������ soln = DSolve[eq1 && q[0] ⩵ 0, q[t], t] // Flatten // Simplify

������ q[t] →
6 ⅇ-1000 t π - 6 π Cos[1200 π t] + 5 Sin[1200 π t]

200000 25 + 36 π2

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This looks complicated. But it is easy to see what is happening.  It is in this 

form
Constant * ( Exp[-t/T] +  A Cos[ w t + phi] ) 
The time constant T = R*C.    

This solution is only useful for t>0.  For backwards time it will give nonsensical 
answers. It is as if the voltage was turned on at t=0.  

The first part slowly dies out as the capacitor charges up and then we just have 

a slightly shi�ed oscillation of the same frequency.  

The voltage on the capacitor is    q[t]/C 

Try changing the frequency to see what happens. As the frequency goes higher 
the amplitude of the voltage on the capacitor falls.  

������ PlotV[t], 1  C1 * q[t] /. soln, {t, 0., 0.005}

������
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What about a RLC  circuit. What does that do ? 
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������ Clear[R1]; Clear[C1]; Clear[V0]; Clear[V];
R1 = 1000; (* Ohm *)

C1 = 10^-6; (* Farad *)

L1 = 10^-1; (* Henry *)

V0 = 1 ; (* Volts *)

omega = 2 * Pi * 2500; (* The frequency is 600 Hz *)

omega = 1  Sqrt[L1 * C1];

V[t_] := V0 * Sin[omega * t];

The input voltage must be equal to the sum of the voltages across R and C  and 

L
Voltage across R is just current * R 

Voltage across C is just   charge/C  

Voltage across L is      (change-in-current)*L   

We need some initial conditions:   charge on C is 0 at time = 0 and current at t=0 

is zero 

������ eq2 = V[t] ⩵ R1 * D[q[t], t] + q[t]  C1 + L1 * D[q[t], {t, 2}];

������ soln2 = DSolve[eq2 && q[0] ⩵ 0 && q'[0] ⩵ 0, q[t], t] // Flatten // Simplify

������ q[t] → -
1

30000000 2

ⅇ
-1000 5+ 15  t

5 3 - 3 5 - 5 3 + 3 5  ⅇ2000 15 t + 6 5 Cos1000 10 t 

This is very difficult to understand from this complicated equation. We will not 
try here. For a proper understanding we need to use Fourier or Laplace 
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transforms.  But Mathematica lets us explore this.  Let’s just plot it without too 

much concern.  

The circuit displays resonance characteristics. 

������ PlotV[t], q[t]  C1 /. soln2, {t, 0, 0.01}

������
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We will finish with a demonstration of waves on a string.  

Imagine a string with length L.  
When it is plucked, vibrations are excited with 

fundamental wavelength of  2L.  

frequency W =   V* 2*Pi/(2L) where V is the velocity of the 

wave. 

Higher vibrations are also excited with different 
amplitudes. 
Wi = i* W 
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This creates a pattern that moves back and forth on the 

string. 

Setup frequency and wave number parameters.  

��������� L = 10; V = 1.;

Kn = Tablei * Pi  L, {i, 1, 11};

ωn = Tablei * V * Pi  L, {i, 1, 11};

Bn1 = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

Bn = 1, 0, 1  3, 0, 1 / 5, 0, 1 / 7, 0, 1  9, 0, 1 / 11;

setup the wavefunction as a function of time and space.  It is a sum of sins and 

cosines. 

��������� Pckt[x_, t_] := Sum[Bn[[i]] * Cos[ωn[[i]] * t] * Sin[Kn[[i]] * x], {i, 1, 11}];
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We are now going to introduce how to animate a plot.  We are going to plot the 

wavefunction over the length of the string, but then move the time variable 

from 1 to 20 and see how the wave changes.  You can change the Bn 

parameters and see what the wave looks like.  

������ Animate[Plot[Pckt[x, t], {x, 0, 10}, PlotRange → {{0, 10}, {-2., 2.}}], {t, 1, 20}]

������
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