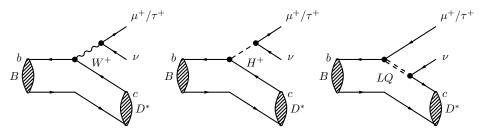
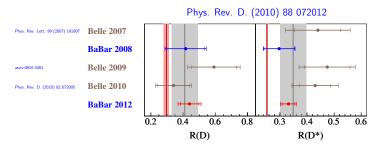
Experimental status of $\mathcal{R}(D^{(*)})$

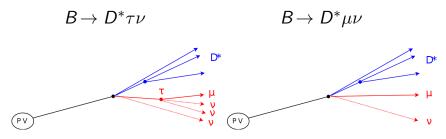

Greg Ciezarek, on behalf of the LHCb collaboration

January 15, 2018

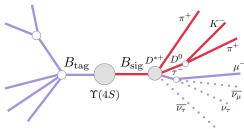

$$B \rightarrow D^{(*)} \tau \nu$$

- In the Standard model, the only difference between $B \to D^{(*)} \tau \nu$ and $B \to D^{(*)} \mu \nu$ is the mass of the lepton
 - Form factors mostly cancel in the ratio of rates (except helicity suppressed amplitude)
- Ratio R($D^{(*)}$) = $\mathcal{B}(B \to D^{(*)} \tau \nu)$ / $\mathcal{B}(B \to D^{(*)} \mu \nu)$ is sensitive to e.g charged Higgs, leptoquark

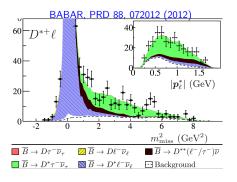
2. Introduction 3/26


History

- How this started: measurements from B factories in $au o \ell
 u
 u$ channel
 - Final measurement from BaBar (Phys. Rev. D. 88 072012) claimed 3 σ excess over SM expectation
 - Status at the time of the Babar measurement

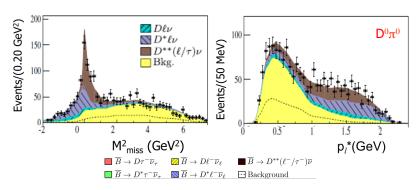

2. Introduction 4/26

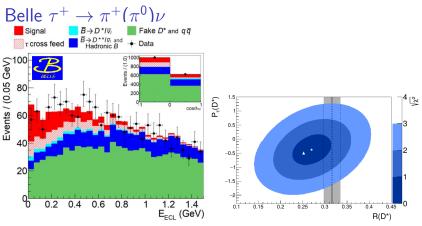
Experimental challenge


- Difficulty: neutrinos 2 for $(\tau \to \pi\pi\pi\nu)\nu$, 3 for $(\tau \to \mu\nu\nu)\nu$
 - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
 - $B \rightarrow D^*\mu\nu$, $B \rightarrow D^{**}\mu\nu$, $B \rightarrow D^*D(\rightarrow \mu X)X$...
 - $B \rightarrow D^*\pi\pi\pi X$, $B \rightarrow D^*D(\rightarrow \pi\pi\pi X)X$...
- Also combinatorial, misidentified background

B Factory method

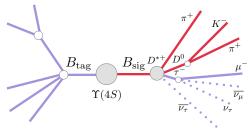
- Traditional methods for measuring these decays rely on $e^+e^- o B\overline{B}$ event properties
 - Centre of mass fixed
 - Nothing else produced in event
- "Tag reconstruction"
 - Fully reconstruct other $B \to \text{measurement of signal } B \text{ kinematics}$
 - Signal B + other B should be entire event → strong rejection against other missing reconstructable particles
- Penalty: sub percent efficiency


Babar measurement


- Babar measurement strategy: 2D fit in missing mass² ($m_{\rm miss}^2$), lepton energy in B rest frame
- Narrow peak for $B\to D^*\mu\nu$, broader distributions for $B\to D^*\tau\nu$, $B\to D^{**}\mu^+\nu$
- (Cleanest sample shown)

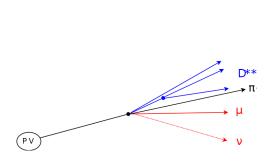
Babar control sample

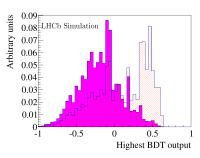
BABAR, PRD 88, 072012 (2012)



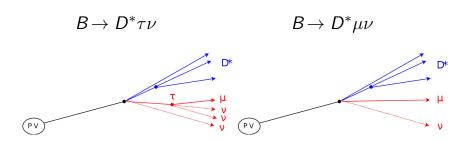
- $B o D^{**} \mu^+ \nu$ background controlled using $D^{(*)} \pi^0$ sample
 - Using data to control background crucial to all measurements
- Combined $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ 3 σ from SM: first hint of the hint
- Still the most precise single measurement

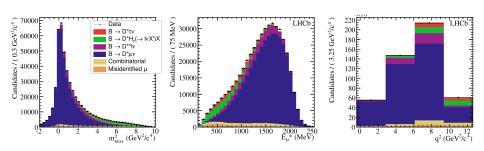
- Recent from Belle: first measurement with $\tau^+ \to \pi^+(\pi^0)\nu$, and first measurement of τ polarisation
- Fit variable: energy left over in Calorimeters after tag+signal reconstruction ($E_{\rm ECL}$)
- Important proof of principle for Belle-II
- Phys. Rev. Lett. 118, 211801 (2017), Phys. Rev. D 97, 012004 (2018)


Can you do this at a hadron collider?



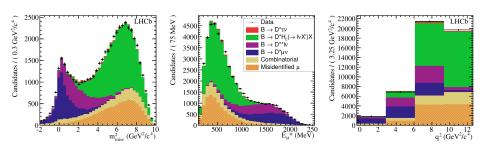
- Traditional methods for measuring these decays rely on $e^+e^- o B\overline{B}$ event properties
 - Centre of mass fixed
 - Nothing else produced in event
- In a hadron collider the $B\overline{B}$ centre of mass isn't fixed \rightarrow rest of event provides little constraint on the signal B kinematics
 - \bullet Event also contains a lot of junk from the proton-proton interaction \to reconstructing the whole event is meaningless
- Needed completely different methods


Isolation



- Reject physics backgrounds with additional charged tracks
- MVA output distribution for $B \to D^{**} \mu^+ \nu$ background (hatched) and signal (solid)
- \bullet Inverting the cut gives a sample hugely enriched in background \rightarrow control samples

Fit strategy



- Can use B flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - Assume $\gamma \beta_{z,visible} = \gamma \beta_{z,total}$
 - \sim 20% resolution on B momentum, long tail on high side
- ullet Can then calculate rest frame quantities $m_{missing}^2$, E_μ , q^2

- Three dimesional template fit in E_{μ} (left), $m_{missing}^2$ (middle), and q^2
 - Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
 - Continuous variation in e.g different form factor parameters

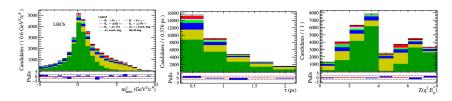
Background strategy

- All major backgrounds modelled using control samples in data
 - Dedicated samples for different backgrounds
 - Quality of fit used to justify modelling
 - Data-driven systematic uncertainties
- All combinatorial or misidentified backgrounds taken from data
- More details on everything in backups

2000 250 E_u* (MeV)

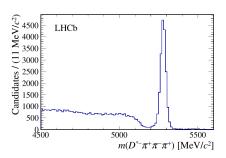
 E_{μ}

Signal fit

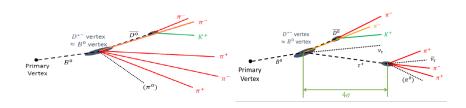

 $9.35 < \mathrm{q^2} < 12.60\,\mathrm{GeV^2\!/c^4}$

 $9.35 < q^2 < 12.60 \,\mathrm{GeV^2/}c^4$

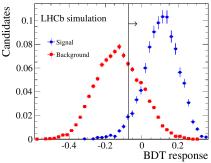
- Fit to isolated data, used to determine ratio of $B \to D^* \tau \nu$ and $B \to D^* \mu \nu$
- Model fits data well
- We measure $\mathcal{R}(D^*)=0.336\pm0.027\pm0.030$, consistent with SM at 2.1σ level
 - Phys. Rev. Lett. 115 (2015) 111803(Run 1 data)



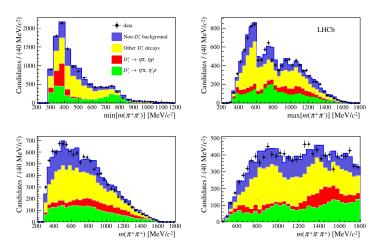
$B_c \rightarrow J/\psi \tau \nu$


- $R_{J/\psi} \equiv B_c \rightarrow J/\psi \, \tau \nu/B_c \rightarrow J/\psi \, \mu \nu$
- Measured using very similar techniques to $\mathcal{R}(D^*)$, on run 1 data
- $R_{J/\psi} = 0.71 \pm 0.17 \pm 0.18$
 - $\sim 2\sigma$ from SM
 - But nearly as far from consistency with $\mathcal{R}(D^*)$
- LHCb-PAPER-2017-035(Run 1 data)

$\mathcal{R}(D^*)$ with $au o \pi\pi\pi u$

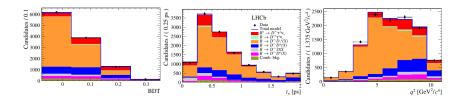

- Compared to muonic $\mathcal{R}(D^*)$:
 - Large $B \to D^* \mu \nu$, $B \to D^{**} \mu^+ \nu$ backgrounds absent
 - Additional $B \to D^* \pi \pi \pi X$ backgrounds
 - $B \rightarrow D^*DX$ with $D \rightarrow \pi\pi\pi X$
- Control experimental efficiencies by measuring rate relative to

Removing $B \to D^*\pi\pi\pi X$

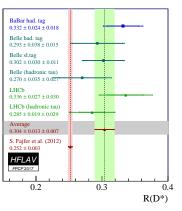


- Can use decay topology to remove direct $B \to D^*\pi\pi\pi X$ decays:
- If the $\pi\pi\pi$ vertex is displaced from the B vertex, cannot be direct $B \to D^*\pi\pi\pi X$
- · Can remove a large, poorly measured background
 - And control the remainder
- $B \rightarrow D^*DX$ major physics background remaining

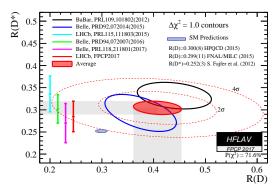
Dealing with $B \rightarrow D^*DX$


- $[\pi\pi\pi]$ lifetime discriminates between tau and $B \to D^*DX$
- Can use partial reconstruction techniques to reconstruct D peak in $B \to D^{*+}D$ (not $B \to D^*DX$)
- $au o \pi\pi\pi\nu$ is mostly a1(1260), $D o \pi\pi\pi X$ mostly isn't
 - Use the $\pi\pi\pi$ (sub) structure to separate $B \to D^*\tau\nu$ from $B \to D^*DX$
 - Shown: control region for $D_s o \pi\pi\pi X$
- Put everything in an MVA: kinematics, Dalitz, partial reconstruction,

- Again, use data to control background modelling
- Use low BDT region to control $D_s o \pi\pi\pi X$ substructure


Fit

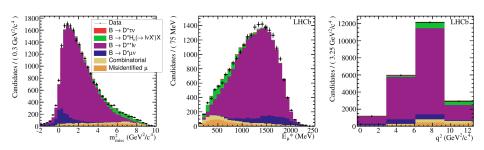
LHCb-PAPER-2017-017, LHCb-PAPER-2017-027


• 3D template fit in BDT, q^2 , tau lifetime to determine signal yield

Result

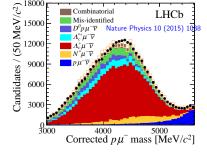
- Result equally compatible with SM, world average
- More precise than our past result (still only run 1 data)
- \bullet New average gives a slightly lower value, but higher precision \to significance increases very, very slightly
- LHCb-PAPER-2017-017, LHCb-PAPER-2017-027(Run 1 data)

Where do we stand?



- Official HFLAV combination of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$
- Excellent consistency between results
- Combined: 4.1σ tension with SM
 - (Before considering more conservative $B \to D^* \tau \nu$ form factors..))

Where next?

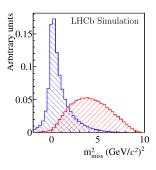

- Next step from muonic $\mathcal{R}(D^*)$: $D^0\mu X$ vs $D^{*+}\mu X$
 - Backgrounds not so much worse than in $D^{*+}\mu X$
 - Significant improvement in precision
- Ongoing: $B_s o D_s^{(*)} au
 u$
 - Similar situation to $\mathcal{R}(D^{(*)})$
 - Main difference to $B \to D^{(*)} \tau \nu$: feed-down mostly via neutrals

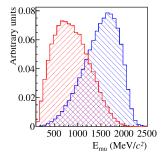
Where next?

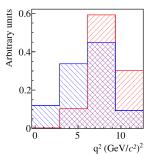
- Ongoing: $\Lambda_b \to \Lambda_c^{(*)} \tau \nu$
 - $\bullet \ \, \text{Different spin structure to meson modes} \rightarrow \text{different physics sensitivity} \\$
 - In particular, would help discriminate tensor contributions
- Potential: $B \to D^{**} \tau \nu$
 - Samples of $D^{**}\mu X$ not so small: control sample for $\mathcal{R}(D^*)$ measurement shown
 - To interpret results, need to split measurements between different D^{**} states
 - More work needed first on $B \to D^{**} \mu \nu$ modes

- If we establish a new physics signal in $b \to c \tau \nu$, would really want to test the flavour structure: $b \to u \tau \nu$
 - $b \to c au
 u$ hard enough to measure, before extra suppression \to background levels challenging
 - Requires very careful choice of channel to give us any hope
- $B \to p\overline{p}\tau\nu$ with $\tau \to \mu\nu\nu$
 - Experimentally the cleanest, Theoretically not so good...
 - Will make detailed measurements of corresponding $B o p\overline{p}\mu
 u$ mode
- $\Lambda_b \to p \tau \nu$ with $\tau \to \pi \pi \pi \nu$?
 - Lattice calculations used to measure $|V_{\rm ub}|$ with equivalent $\Lambda_b \to p \mu \nu$ mode \to already have a good theory prediction

7. Conclusion 26/26

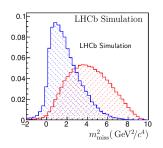

Conclusion

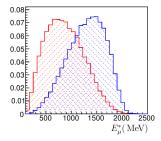

- World average for $\mathcal{R}(D^{(*)})$ in 4.1 σ tension with SM
- More updates to come soon from LHCb
 - Wide program of measurements in related channels
 - Published measurements still only Run 1 data!
- Not so long until Belle-II enters the game
- Will also start measuring observables beyond branching fractions
- All measurements are still limited by sample sizes, will continue to improve
- · Exciting times ahead

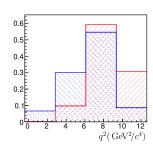

8. Backup 27/26

Backups

$$B \rightarrow D^* \mu \nu$$

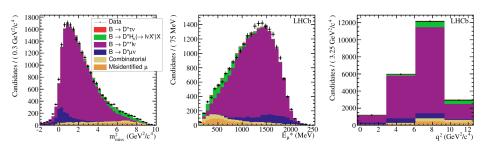


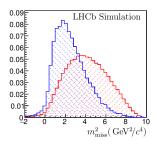


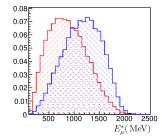


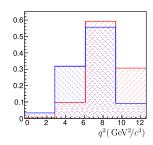
- $B \rightarrow D^* \mu \nu$ (black) vs $B \rightarrow D^* \tau \nu$ (red)
- $B \to D^* \mu \nu$ is both the normalisation mode, and the highest rate background ($\sim 20 \times B \to D^* \tau \nu$)
 - Use CLN parameterisation for form factors
 - \bullet Float form factors parameters in fit \to uncertainty taken into account

$$B \rightarrow D^{**} \mu^+ \nu$$



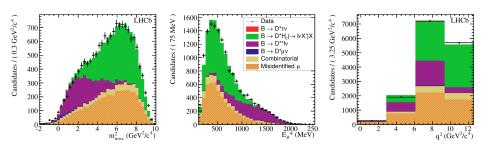

- $B \to D^{**} \mu^+ \nu$ refers to any higher charm resonances (or non resonant hadronic modes)
- Not so well measured
 - Set of states comprising D^{**} known to be incomplete
 - Decay models not well measured
- For the established states (shown in black):
 - Separate components for each resonance (D_1, D_2^*, D_1')
 - Use LLSW model (Phys. Rev. D. (1997) 57 307), float slope of Isgur-wise function

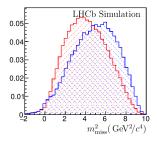

$$B \to D^{**} (\to D^{*+} \pi) \mu \nu$$
 control sample

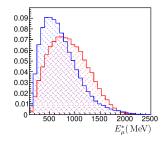


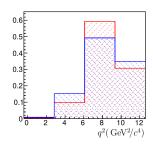
- Isolation MVA selects one track, $M_{D^{*+}\pi}$ around narrow D^{**} peak \to select a sample enhanced in $B \to D^{**}\mu^+\nu$
 - Use this to constrain, justify $B \to D^{**} \mu^+ \nu$ shape for light D^{**} states
 - Also fit above, below narrow D^{**} peak region to check all regions of $M_{D^{*+}\pi}$ are modelled correctly in data

Higher $B \rightarrow D^{**}\mu^+\nu$ states



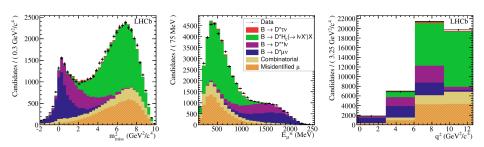

- Previously unmeasured $B \to D^{**} (\to D^{*+} \pi \pi) \mu \nu$ contributions recently measured by BaBar
 - Too little data to separate individual (non)resonant components
 - Single fit component, empirical treatment
- Constrain based on a control sample in data
 - Degrees of freedom considered: D^{**} mass spectrum, q^2 distribution
 - Effect of D** mass spectrum negligible


$$B \to D^{**} (\to D^{*+} \pi \pi) \mu \nu$$
 control sample

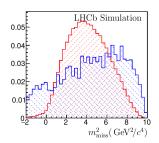


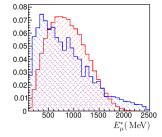
- Also look for two tracks with isolation MVA \to study $B \to D^{**} (\to D^{*+} \pi \pi) \mu \nu$ in data
- Can control shape of this background

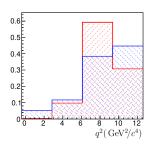
$B \rightarrow D^*DX$



- $B \rightarrow D^*DX$ consists of a very large number of decay modes
 - Physics models for many modes not well established
- Constrain based on a control sample in data
- Single component, empirical treatment
 - Consider variations in M_{DD}
 - Multiply simulated distributions by second order polynomials
 - Parameters determined from data

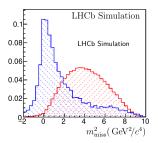


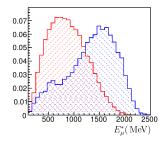

$B \rightarrow D^*DX$ control sample

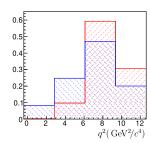


- Isolation MVA selects a track with loose kaon ID \rightarrow select a sample enhanced in $B \rightarrow D^*DX$
- Use this to constrain, justify $B \rightarrow D^*DX$ shape

Combinatorial backgrounds

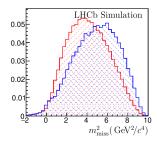


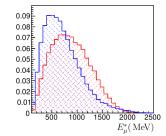


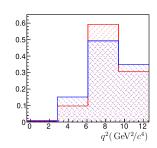

35/26

- Combinatorial background modelled using same-sign $D^{*+}\mu^+$ data
- Two sources of combinatorial background are treated separately (shown on next slide)

Combinatorial backgrounds






- Non D^{*+} backgrounds (fake D^*) template modelled using $D^0\pi^-$ data (shown)
 - ullet Yield determined from sideband extrapolation beneath D^{*+} mass peak
- Hadrons misidentified as muons (fake muons)
 - Controlled using $D^{*+}h^{\pm}$ sample
 - Both template and expected yield can be determined
- Both of these are subtracted from $D^{*+}\mu^+$ template to avoid double counting

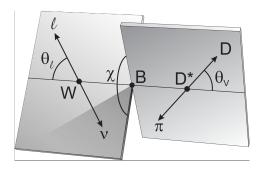
$D^{*+}\tau X$ backgrounds

- Two small backgrounds containing taus, each $<\sim 10\%$ of the signal yield: $B\to D^{**}\tau^+\nu$ (shown) and $B\to D^*(D_s\to \tau\nu)X$
 - Both too small to measure
- $B \to D^{**} \tau^+ \nu$ constrained based on measured $B \to D^{**} \mu^+ \nu$ yield, theoretical expectations (\sim 50% uncertainty)
- $B \to D^*(D_s \to \tau \nu)X$ constrained based on $B \to D^*DX$ yield, and measured branching fractions ($\sim 30\%$ uncertainty)

Systematics / efficiencies

Model uncertainties	Size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
D^* form factors	0.6
$B \to D^*DX$ shape	0.5
$\mathcal{B}(B \to D^{**}\tau\nu)/\mathcal{B}(B \to D^{**}\mu\nu)$	0.5
$B \to [D^*\pi\pi]\mu\nu$ shape	0.4
Corrections to simulation	0.4
Combinatoric background shape	0.3
D^{**} form factors	0.3
$B \to D^*(D_s \to \tau \nu)X$ fraction	0.1
Total model uncertainty	2.8

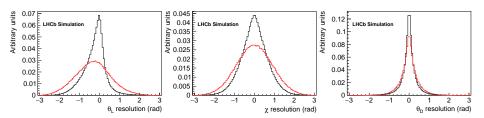
Size $(\times 10^{-2})$
0.6
0.6
0.3
0.2
< 0.1
0.9
3.0


- ullet Largest systematic from simulation statistics o reducible in future
- Next largest systematic from choice of method used to construct fake muon template
- Other systematic from background modelling depend on control samples in data
 - No uncertainties limited by external inputs
- Systematics from ratio of $B \to D^* \mu \nu$ and $B \to D^* \tau \nu$ efficiencies small

Other hadronic analyses

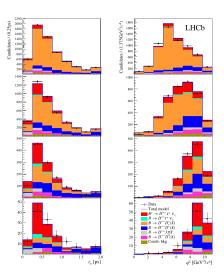
- After $\mathcal{R}(D^*)$, expect full program of measurements with hadronic tau
- $\mathcal{R}(\Lambda_c)$ already underway
- Key issue: normalisation channels
 - Hadronic $\mathcal{R}(D^*)$ measurement relies on precise external measurement of $B \to D^{*+}\pi^-\pi^+\pi^-$
 - These do not exist for e.g $\Lambda_b \to \Lambda_c \pi^- \pi^+ \pi^-$
 - Plan to use theory calculation for $\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)/\mathcal{B}(B \to D^* \mu \nu)$ to avoid dependence on Λ_b production fraction

9. Future 40/26


Beyond Rs

- Ratios of branching fractions are only the first observable
 - q^2 , angles, au/D^* polarisation have different sensitivity to new physics
- Variables fitted in $au o \mu
 u
 u$ analyses already have some sensitivity to this
 - For now, measurements assume SM distributions (+ uncertainties)

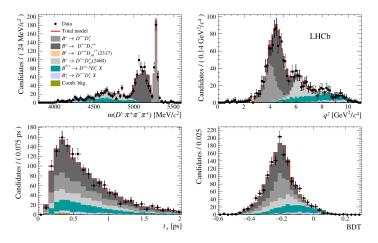
Angular resolutions for $B o D^* au u (au o \mu u u)$



- Angular resolution for $B \to D^* \mu \nu$ (black) and $B \to D^* \tau \nu$ (red)
- Tau decay results in degredation of resolution
- Pretty wide, but have something to work with
 - Interesting mesurements also possible in muonic modes
- Ideas for how to exploit this, some tools already exist
- Sensitivity not yet known, may need larger samples to really pin things down..

Future

- What we have analysed now is a tiny fraction of the sample we will eventually collect
 - With 50 fb $^{-1}$ (2021-2030), samples will grow by a factor \sim 30
 - With 300 fb $^{-1}$, (2034) samples will grow by a factor \sim 200
 - No sign that we hit a systematic limit
 - O(10 million) $B \to D^* \tau \nu \ (\tau \to \mu \nu \nu)$ events \to huge power for angular analysis
 - ullet Need to work together with theory to understand all contributions to the needed precision o continuous process
 - Even more suppressed signals ($B_c \to J/\psi \tau \nu X$, $B \to D^{**} \tau \nu$, $b \to u \tau \nu$ modes?) can have high statistical precision


Fit

Now in slices of BDT output

Dealing with $B \rightarrow D^*DX$

- Use data to control $B \rightarrow D^*DX$ modelling
- Can use $D_{(s)} \to \pi\pi\pi$ mass peak to select a pure $B \to D^*DX$ sample
- This controls the $B o D^*DX$ modelling, but not the $D o \pi\pi\pi X$

