ZPW 2018
 Round Table: theory errors on the anomalies

Diego Guadagnoli
LAPTh Annecy

Main themes

- How reliable are the SM TH predictions on which we base the evidences of anomalies
- How reliably can we extract New-Physics information
(0) TH errors: Apples vs. Oranges

As concerns TH errors on anomaly-related quantities, there's a clear distinction to be made between

- Ratio observables
- BR-like observables
(0) TH errors: Apples vs. Oranges

As concerns TH errors on anomaly-related quantities, there's a clear distinction to be made between

- Ratio observables
- BR-like observables
(1) For ratio obs., the discussion may be circumscribed to well-defined points
(0) TH errors: Apples vs. Oranges

As concerns TH errors on anomaly-related quantities, there's a clear distinction to be made between

- Ratio observables
- BR-like observables
(1) For ratio obs., the discussion may be circumscribed to well-defined points
(a) On $R K\left(^{*}\right)$ in $[1,6] \mathrm{GeV}^{2}$ there is not much to say.
- f.f. error cancels to $\left(m_{\mu} / m_{B}\right)^{2}$ accuracy

(0) TH errors: Apples vs. Oranges

As concerns TH errors on anomaly-related quantities, there's a clear distinction to be made between

- Ratio observables
- BR-like observables
(1) For ratio obs., the discussion may be circumscribed to well-defined points
(a) On $R K\left(^{*}\right)$ in $[1,6] \mathrm{GeV}^{2}$ there is not much to say.
- f.f. error cancels to $\left(m_{\mu} / m_{B}\right)^{2}$ accuracy
- Large e.m. logs are accounted for by PHOTOS MC (and TH agrees within 1\%)

(0) TH errors: Apples vs. Oranges

As concerns TH errors on anomaly-related quantities, there's a clear distinction to be made between

- Ratio observables
- BR-like observables
(1) For ratio obs., the discussion may be circumscribed to well-defined points
(a) On $R K\left(^{*}\right)$ in $[1,6] \mathrm{GeV}^{2}$ there is not much to say.
- f.f. error cancels to $\left(m_{\mu} / m_{B}\right)^{2}$ accuracy
- Large e.m. logs are accounted for by PHOTOS MC (and TH agrees within 1\%)

- Non-log e.m. effects are $\sim \alpha / \pi \cdot($ a few $) \sim 1 \%$
(1) Ratio obs., continued.
(b) Some more discussion deserves $R K^{*}$ for $q^{2}<1 \mathrm{GeV}^{2}$

Ratio obs., continued.
(b) Some more discussion deserves $R K^{*}$ for $q^{2}<1 \mathrm{GeV}^{2}$

- The measurement includes data as low as $q^{2}=0.045 \mathrm{GeV}^{2}$ to help statistics
(1) Ratio obs., continued.
(b) Some more discussion deserves $R K^{*}$ for $q^{2}<1 \mathrm{GeV}^{2}$
- The measurement includes data as low as $q^{2}=0.045 \mathrm{GeV}^{2}$ to help statistics
- This value is, however, (too) close to the di-muon threshold

$$
\begin{aligned}
& \text { Bordone et al.'s } \\
& \text { "Note added" }
\end{aligned}
$$

(1) Ratio obs., continued.
(b) Some more discussion deserves $R K^{*}$ for $q^{2}<1 \mathrm{GeV}^{2}$

- The measurement includes data as low as $q^{2}=0.045 \mathrm{GeV}^{2}$ to help statistics
- Preferred NP solutions tend to predict $R K^{*}[0.045,1.1]$ larger than exp, but (exp) error is still too large to draw conclusions

(1) Ratio obs., continued.
(c) Discussion also deserve $R K\left({ }^{*}\right)$ for q^{2} above narrow charmonium
(1) Ratio obs., continued.
(c) Discussion also deserve $R K\left(^{*}\right)$ for q^{2} above narrow charmonium
- Broad cc̄ resonances modeled as Breit-Wigner-like shifts to C9
(1) Ratio obs., continued.
(c) Discussion also deserve $R K\left({ }^{*}\right)$ for q^{2} above narrow charmonium
- Broad cc̄ resonances modeled as Breit-Wigner-like shifts to C9

$$
\begin{aligned}
& \text { Ali, Mannel, Morozumi; } \\
& \text { Krueger, Sehgal }
\end{aligned}
$$

- Main issue:

How well do these BW forms describe the actual spectrum away from the resonances.
(1) Ratio obs., continued.
(c) Discussion also deserve $R K\left({ }^{*}\right)$ for q^{2} above narrow charmonium

- Broad cc̄ resonances modeled as Breit-Wigner-like shifts to C9

$$
\begin{aligned}
& \text { Ali, Mannel, Morozumi; } \\
& \text { Krueger, Sehgal }
\end{aligned}
$$

- Main issue:

How well do these BW forms describe the actual spectrum away from the resonances.

- Is this an issue for ratio observables? Arguably, no.

DG, Reboud, Zwicky; Lyon, Zwicky
D. Guadagnoli, ZPW 2018, RT on TH errors
(1) Ratio obs., continued.
(c) Discussion also deserve $R K\left({ }^{*}\right)$ for q^{2} above narrow charmonium

- Broad cc̄ resonances modeled as Breit-Wigner-like shifts to C9

$$
\begin{aligned}
& \text { Ali, Mannel, Morozumi; } \\
& \text { Krueger, Sehgal }
\end{aligned}
$$

- Main issue:

How well do these BW forms describe the actual spectrum away from the resonances.

- Is this an issue for ratio observables? Arguably, no.

DG, Reboud, Zwicky; Lyon, Zwicky
D. Guadagnoli, ZPW 2018, RT on TH errors
(1) Ratio obs., continued.
(d) $O n R D\left(^{*}\right)$

- RD: there are two LQCD computations for both f.f.'s and they agree
- RD*: Vcb issues have barely any impact on RD*
(1) Ratio obs., continued.
(d) $O n R D\left(^{*}\right)$
- RD: there are two LQCD computations for both f.f.'s and they agree
- RD*: Vcb issues have barely any impact on RD*
(2) BR-like observables
- Here the discussion is much vaster

- Useful to identify a few "crucial" issues, and confine the discussion to them Otherwise the discussion here will eat up the discussion on ratio errors
(1) Ratio obs., continued.
(d) $\operatorname{On~} R D$ ($\left.^{*}\right)$
- RD: there are two LQCD computations for both f.f.'s and they agree
- RD*: Vcb issues have barely any impact on RD*
(2) $B R$-like observables
- Here the discussion is much vaster

- Useful to identify a few "crucial" issues, and confine the discussion to them Otherwise the discussion here will eat up the discussion on ratio errors
- Which would be a pity, because main NP features can be established from ratios alone
D. Guadagnoli, ZPW 2018, RT on TH errors

