Zurich Phenomenology Workshop 2018

17 January 2018

Clockwork Structure and Phenomenology

Yevgeny Kats

Outline

➤ The clockwork mechanism

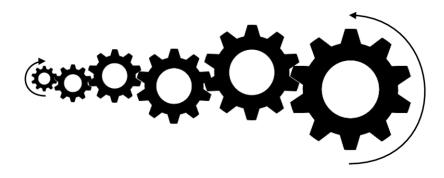
Choi, Kim, Yun [1404.6209] Choi, Im [1511.00132] Kaplan, Rattazzi [1511.01827] Giudice, McCullough [1610.07962]

The clockwork / linear dilaton solution to the electroweak-Planck hierarchy problem

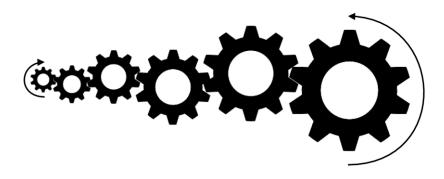
Structure of the theory

✤ LHC phenomenology

Giudice, McCullough [1610.07962] Giudice, Kats, McCullough, Torre, Urbano [1711.08437]

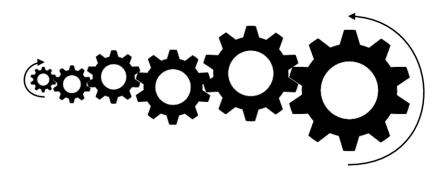


A generator of tiny couplings.



A generator of tiny couplings.

First proposed to generate a tiny coupling to a **scalar** in inflation and relaxion contexts. Choi, Kim, Yun [1404.6209]; Choi, Im [1511.00132] Kaplan, Rattazzi [1511.01827]



A generator of tiny couplings.

First proposed to generate a tiny coupling to a **scalar** in inflation and relaxion contexts. Choi, Kim, Yun [1404.6209]; Choi, Im [1511.00132] Kaplan, Rattazzi [1511.01827]

Later,

Generalized to **fermions, gauge bosons, gravitons.**

- □ Obtained from deconstruction of an **extra dimension**.
- □ Applied to the **electroweak-Planck hierarchy** directly.

Giudice, McCullough [1610.07962]

Further discussion: Craig, Garcia Garcia, Sutherland [1704.07831] Giudice, McCullough [1705.10162]

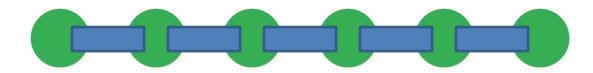
Imagine a particle *P* kept massless by a symmetry *S*.

For example:

- Shift symmetry for a spin-0 particle
- Chiral symmetry for a spin-1/2 particle
- Gauge symmetry for a spin-1 particle
- Diffeomorphism invariance for a spin-2 particle

➢ Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .

Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .

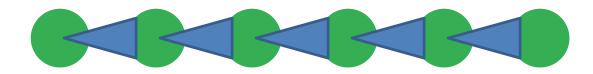


Break the symmetries by nearest-neighbor mass mixings.
 One combination

$$\mathcal{P} = \sum c_i P_i$$

remains massless.

Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .



Break the symmetries by nearest-neighbor mass mixings.
 One combination

$$\mathcal{P} = \sum c_i P_i$$

remains massless.

> If the breaking is asymmetric, c_i vary with *i* exponentially.

Example: for scalar fields

$$V(\phi) = \frac{1}{2} m^2 \sum_{i=0}^{N-1} (\phi_i - q\phi_{i+1})^2$$

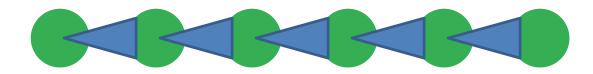
Example: for scalar fields

$$V(\phi) = \frac{1}{2} m^2 \sum_{i=0}^{N-1} (\phi_i - q\phi_{i+1})^2 \equiv \frac{1}{2} \sum_{i,j=0}^N \phi_i M_{ij}^2 \phi_j$$

$$M^{2} = m^{2} \begin{pmatrix} 1 & -q & 0 & & 0 \\ -q & 1+q^{2} & -q & \cdots & & 0 \\ 0 & -q & 1+q^{2} & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & \frac{1+q^{2} & -q}{-q & q^{2}} \end{pmatrix}$$

$$\Box > c_i = \frac{N(q)}{q^i}$$

Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .



Break the symmetries by nearest-neighbor mass mixings.
 One combination

$$\mathcal{P} = \sum c_i P_i$$

remains massless.

> If the breaking is asymmetric, c_i vary with *i* exponentially.

Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i.

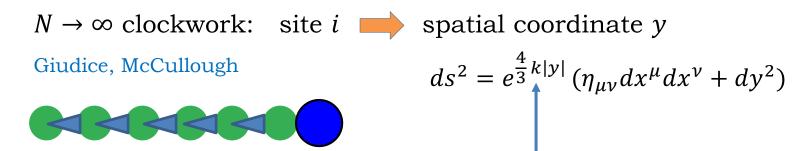
Break the symmetries by nearest-neighbor mass mixings.
 One combination

$$\mathcal{P} = \sum c_i P_i$$

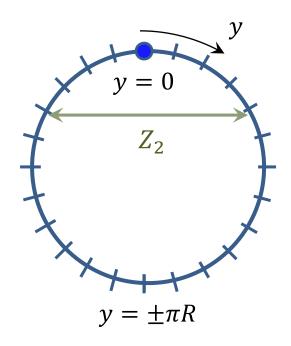
remains massless.

- > If the breaking is asymmetric, c_i vary with *i* exponentially.
- ➢ Coupling external fields to P_N will result in their exponentially suppressed coupling to \mathcal{P} .

Continuum limit: linear dilaton scenario



k: a free parameter (mass scale)



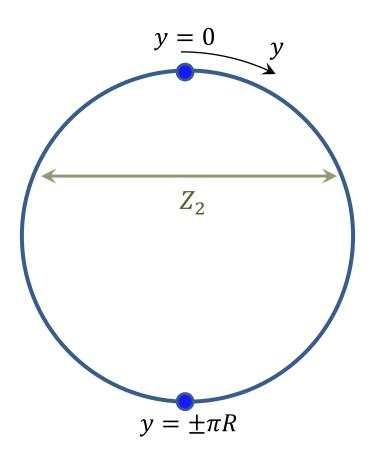
Continuum limit: linear dilaton scenario

 $N \rightarrow \infty$ clockwork: site $i \implies$ spatial coordinate yGiudice, McCullough $ds^2 = e^{\frac{4}{3}k|y|} (\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2)$

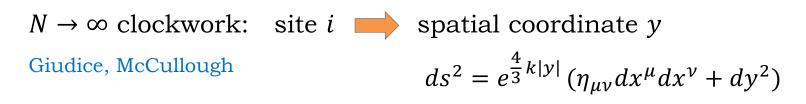
scalar *S* (dilaton) with a linear profile S(y) = 2k|y|due to $V(S) = -4k^2e^{-2S/3}$

graviton

with Planck scale M_5



Continuum limit: linear dilaton scenario



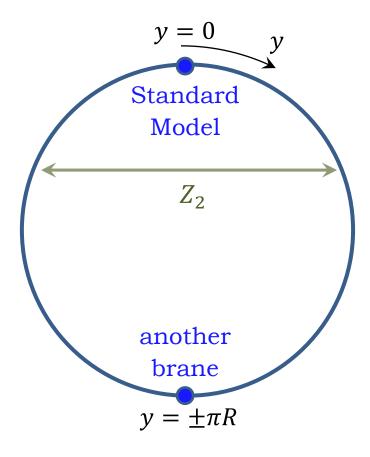
scalar *S* (dilaton) with a linear profile S(y) = 2k|y|due to $V(S) = -4k^2e^{-2S/3}$

graviton

with Planck scale $M_5 \sim 10 \text{ TeV}$

Electroweak-Planck hierarchy

$$M_P^2 = \frac{M_5^3}{k} (e^{2\pi kR} - 1), \qquad kR \approx 10$$



Comparison with other scenarios

LED
$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$$
 $M_P^2 = L_5 M_5^3$

The hierarchy is due to the extra-dimensional **volume**.

RS

$$ds^2 = e^{2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 \qquad M_P^2 \simeq e^{2k\pi R} \frac{M_5^3}{k}$$

. .2

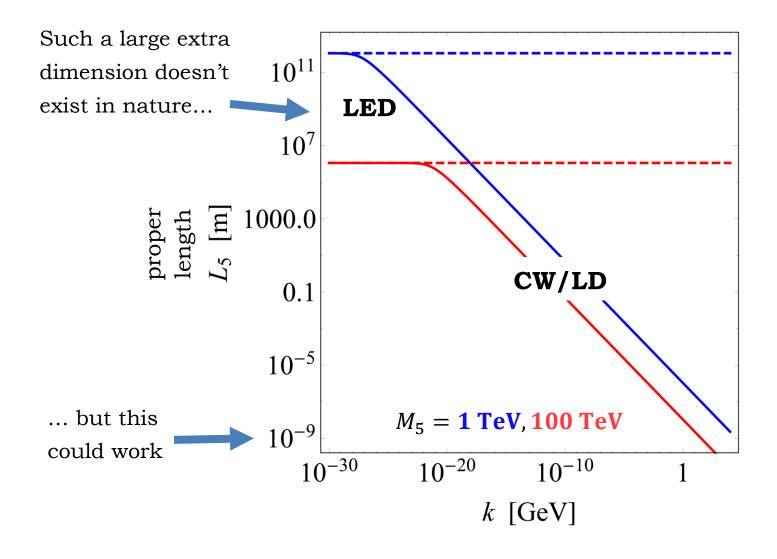
The hierarchy is due to the **warp factor**.

$$\mathbf{CW}/\mathbf{LD} \quad ds^2 = e^{\frac{4}{3}ky} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 \right) \qquad M_P^2 \simeq L_5 \ e^{\frac{4}{3}k\pi R} \ \frac{M_5^3}{3}$$

with $L_5 \simeq e^{\frac{2}{3}k\pi R} \frac{3}{k}$

The hierarchy is due to a combination of the **volume** and the **warp factor**.

Comparison with other scenarios



Same scenario from the Little String Theory

Stack of D3 branes

- \rightarrow 4*d* strongly coupled SCFT
- \rightarrow dual to gravitational theory on $AdS_5 \times S^5$ Maldacena [hep-th/9711200]
- \rightarrow **Randall-Sundrum** setup with two branes to explain

the TeV-Planck hierarchy Randall, Sundrum [hep-ph/9905221]

Stack of NS5 branes

 → 6d strongly coupled non-local theory: Little String Theory (LST) Berkooz, Rozali, Seiberg [hep-th/9704089]; Seiberg [hep-th/9705221]
 → dual to 7d gravitational theory w/linearly varying dilaton Aharony, Berkooz, Kutasov, Seiberg [hep-th/9808149] Giveon, Kutasov [hep-th/9909110]
 → LST at a TeV (linear dilaton) setup with two branes to explain the TeV-Planck hierarchy Antoniadis, Dimopoulos, Giveon [hep-th/0103033]
 Phenomenology Antoniadis, Arvanitaki, Dimopoulos, Giveon [1102.4043]

studies Baryakhtar [1202.6674]; Cox, Gherghetta [1203.5870]

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} e^S (R + (\nabla S)^2 + 4k^2) + \sum_{i=SM,h} e^{S(y_i)} \int d^4x \sqrt{-g} \, (\mathcal{L}_i - \Lambda_i)$$

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} e^S (R + (\nabla S)^2 + 4k^2) + \sum_{i=\text{SM,h}} e^{S(y_i)} \int d^4x \sqrt{-g} \, (\mathcal{L}_i - \Lambda_i)$$

Going to Einstein frame $(g_{MN} \rightarrow e^{-2S/3}g_{MN})$:

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} \left(R - \frac{1}{3} (\nabla S)^2 - V(S) \right) - \sum_{i=SM,h} e^{-S(y_i)/3} \int d^4x \sqrt{-g} \left(\mathcal{L}_i - \Lambda_i \right)$$

where $V(S) = -4k^2e^{-2S/3}$.

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} e^S (R + (\nabla S)^2 + 4k^2) + \sum_{i=\text{SM,h}} e^{S(y_i)} \int d^4x \sqrt{-g} \, (\mathcal{L}_i - \Lambda_i)$$

Going to Einstein frame $(g_{MN} \rightarrow e^{-2S/3}g_{MN})$:

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} \left(R - \frac{1}{3} (\nabla S)^2 - V(S) \right) - \sum_{i=SM,h} e^{-S(y_i)/3} \int d^4x \sqrt{-g} \left(\mathcal{L}_i - \Lambda_i \right)$$

where $V(S) = -4k^2 e^{-2S/3}$.

One obtains the desired solution

$$ds^{2} = e^{\frac{4}{3}k|y|}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}) \qquad S(y) = 2k|y|$$

if the cosmological constants (CCs) are $\Lambda_5 = 0$, $\Lambda_h = -\Lambda_{SM} = 4M_5^3k$.

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} e^S (R + (\nabla S)^2 + 4k^2) + \sum_{i=\text{SM,h}} e^{S(y_i)} \int d^4x \sqrt{-g} \, (\mathcal{L}_i - \Lambda_i)$$

Going to Einstein frame $(g_{MN} \rightarrow e^{-2S/3}g_{MN})$:

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} \left(R - \frac{1}{3} (\nabla S)^2 - V(S) \right) - \sum_{i=SM,h} e^{-S(y_i)/3} \int d^4x \sqrt{-g} \left(\mathcal{L}_i - \Lambda_i \right)$$

where $V(S) = -4k^2 e^{-2S/3}$.

One obtains the desired solution

$$ds^{2} = e^{\frac{4}{3}k|y|}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}) \qquad S(y) = 2k|y|$$

if the cosmological constants (CCs) are $\Lambda_5 = 0$, $\Lambda_h = -\Lambda_{SM} = 4M_5^3k$.

Question from the EFT point of view

The symmetry $S \rightarrow S + \alpha$ (with *k* as a spurion) forbids additional interactions, but nothing forbids the CCs!

(May dismiss only one of them as the usual CC tuning.)

Impact of cosmological constants

Suppose there is a CC of natural size, or maybe accidentally a few orders of magnitude smaller.

Does it significantly change the solution?

Impact of cosmological constants

Suppose there is a CC of natural size, or maybe accidentally a few orders of magnitude smaller.

Does it significantly change the solution?

Solving the EOM perturbatively in the CC:

Spectrum corrections due to bulk CC

$$\frac{\Lambda_5}{M_5^5} \exp\left(\frac{4}{3}\pi kR\right) \sim 10^{18} \frac{\Lambda_5}{M_5^5}$$

i.e. even a tiny bulk CC converts CW/LD into RS or dS.

 \hookrightarrow Must have SUSY in the bulk to avoid CC.

Impact of cosmological constants

Suppose there is a CC of natural size, or maybe accidentally a few orders of magnitude smaller.

Does it significantly change the solution?

Solving the EOM perturbatively in the CC:

Spectrum corrections due to bulk CC

$$\frac{\Lambda_5}{M_5^5} \exp\left(\frac{4}{3}\pi kR\right) \sim 10^{18} \frac{\Lambda_5}{M_5^5}$$

i.e. even a tiny bulk CC converts CW/LD into RS or dS.

\hookrightarrow Must have SUSY in the bulk to avoid CC.

SM-brane CC modifies the dilaton slope by an O(1) factor: $\frac{\Delta k}{k} \sim -\frac{\Lambda_{\rm SM}}{kM_5^3}$

 \hookrightarrow It's OK for SUSY to be broken in the SM sector.

Possible UV completion for the bulk

From string theory textbooks:

To get a non-anomalous superstring theory, the target space must have D = 10 dimensions (if the background fields are flat).

$$S = \frac{1}{2\alpha'} \int d^2 \sigma \sqrt{-h} \left(g_{MN}(X) \partial_\alpha X^M \partial_\beta X^N h^{\alpha\beta} + \frac{\alpha'}{4\pi} S(X) \mathcal{R}^{(2)} + \dots \right)$$
$$\beta_{MN}(g) = \alpha' \mathcal{R}_{MN} - 2\alpha' \nabla_M \nabla_N S + \dots + \mathcal{O}(\alpha'^2)$$
$$\beta(S) = \underbrace{\frac{10 - D}{3}}_{3} + \frac{\alpha'}{2} \nabla^2 S + \alpha' \nabla_M S \nabla^M S + \dots + \mathcal{O}(\alpha'^2)$$

Possible UV completion for the bulk

From string theory textbooks:

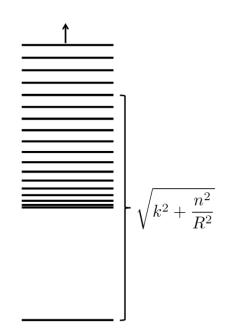
To get a non-anomalous superstring theory, the target space must have D = 10 dimensions (if the background fields are flat).

$$S = \frac{1}{2\alpha'} \int d^2 \sigma \sqrt{-h} \left(g_{MN}(X) \partial_\alpha X^M \partial_\beta X^N h^{\alpha\beta} + \frac{\alpha'}{4\pi} S(X) \mathcal{R}^{(2)} + \dots \right)$$
$$\beta_{MN}(g) = \alpha' \mathcal{R}_{MN} - 2\alpha' \nabla_M \nabla_N S + \dots + \mathcal{O}(\alpha'^2)$$
$$\beta(S) = \underbrace{\frac{10 - D}{3}}_{3} + \frac{\alpha'}{2} \nabla^2 S + \alpha' \nabla_M S \nabla^M S + \dots + \mathcal{O}(\alpha'^2)$$

However, any $D \neq 10$ is possible for a background with a linear dilaton profile with an appropriate slope! This works to all orders in α' and is known as **non-critical string theory.** LHC phenomenology of Clockwork / Linear Dilaton

KK graviton masses

$$m_0^2 = 0$$
 $m_n^2 = k^2 + \frac{n^2}{R^2}$ $n = 1, 2, 3, ...$



KK graviton masses

$$m_0^2 = 0$$
 $m_n^2 = k^2 + \frac{n^2}{R^2}$ $n = 1, 2, 3, ...$

KK graviton couplings

$$\mathcal{L} \supset -\frac{1}{\Lambda_n} h_{\mu\nu}^{(n)} T^{\mu\nu}$$

$$\Lambda_0^2 = M_P^2 \qquad \Lambda_n^2 = M_5^3 \pi R \left(1 + \left(\frac{kR}{n}\right)^2 \right)$$

<u> </u>	
	$\sqrt{k^2 + \frac{n^2}{R^2}}$

KK graviton masses

$$m_0^2 = 0$$
 $m_n^2 = k^2 + \frac{n^2}{R^2}$ $n = 1, 2, 3, ...$

KK graviton couplings

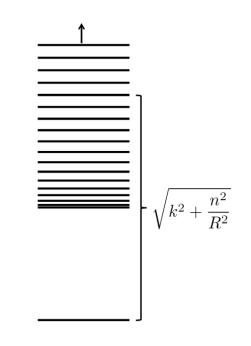
$$\mathcal{L} \supset -\frac{1}{\Lambda_n} h_{\mu\nu}^{(n)} T^{\mu\nu}$$

$$\Lambda_0^2 = M_P^2 \qquad \Lambda_n^2 = M_5^3 \pi R \left(1 + \left(\frac{kR}{n}\right)^2 \right)$$

Production via $T_{\mu\nu}$ from gg and $q\bar{q}$.

Decays (1) To SM particle pairs via $T_{\mu\nu}$

(2) To pairs of lighter KK modesvia 5D gravity self-interactions.Long cascades are possible.



KK graviton masses

$$m_0^2 = 0$$
 $m_n^2 = k^2 + \frac{n^2}{R^2}$ $n = 1, 2, 3, ...$

KK graviton couplings

$$\mathcal{L} \supset -\frac{1}{\Lambda_n} h_{\mu\nu}^{(n)} T^{\mu\nu} \qquad \Lambda_0^2 = M_P^2 \qquad \Lambda_n^2 = M_5^3 \pi R \left(1 + \left(\frac{kR}{n}\right)^2 \right)$$

KK dilaton / radion masses and couplings

$$m_0^2 = \frac{8}{9}k^2 \qquad m_n^2 = k^2 + \frac{n^2}{R^2} \qquad n = 1, 2, 3, \dots$$
$$\mathcal{L} \supset -\frac{1}{\Lambda_n} \phi^{(n)} T^{\mu}_{\mu} \qquad \Lambda_0^2 \simeq \frac{18M_5^3}{k} \qquad \Lambda_n^2 = \frac{3}{4}M_5^3 \pi R \left(10 + \left(\frac{kR}{n}\right)^2 + 9\left(\frac{n}{kR}\right)^2\right)$$

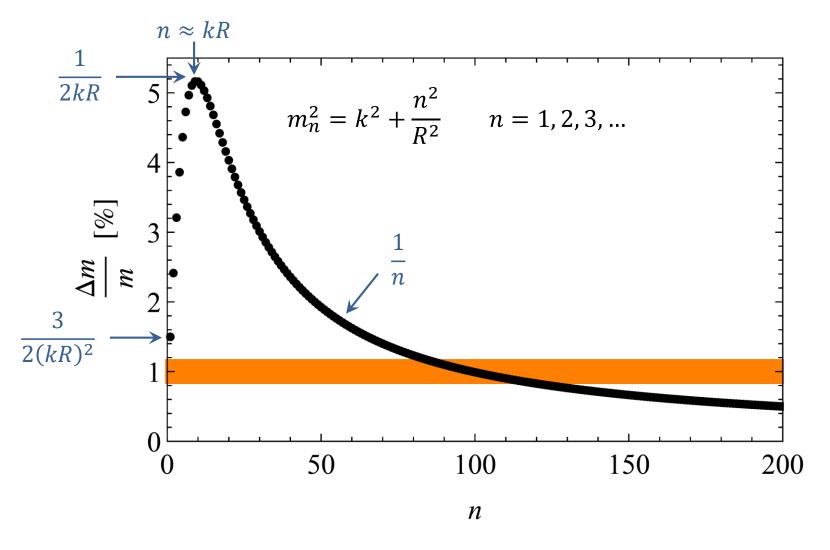
Model dependence in the case of non-rigid stabilization or Higgs-curvature coupling. Kofman, Martin, Peloso [hep-ph/0401189] Cox, Gherghetta [1203.5870]

KK modes of superpartners etc. are ignored only for simplicity.

KK mode mass splittings

$$m_n^2 = k^2 + \frac{n^2}{R^2}$$
 $n = 1, 2, 3, ...$

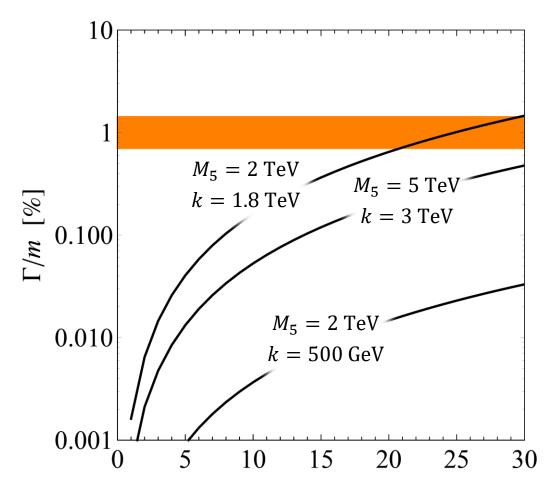
KK mode mass splittings



For $n \leq 100$, i.e. $k \leq m_n \leq 10k$, the individual modes can be resolved in the $\gamma\gamma$ and e^+e^- channels in ATLAS and CMS!

KK mode mass splittings

The intrinsic widths of at least the first ~30 modes are below the resolution in the relevant range of parameters.



Decays to SM particles

						$\sum_i \ell_i^+ \ell_i^-$	
34%	38%	9.2%	4.6%	0.35%	4.2%	6.4%	3.2%

*when phase space suppressions are negligible

Easiest decays to see: $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$

Total rate to SM particles (for $n \gg kR$, $m_n \gg m_t$):

$$\Gamma_{n \to \text{SM}} \simeq \frac{283}{960\pi^2} \frac{m_n^3}{RM_5^3}$$

Decays to SM particles

						$\sum_i \ell_i^+ \ell_i^-$	
34%	38%	9.2%	4.6%	0.35%	4.2%	6.4%	3.2%

*when phase space suppressions are negligible

Easiest decays to see: $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$

Total rate to SM particles (for $n \gg kR$, $m_n \gg m_t$):

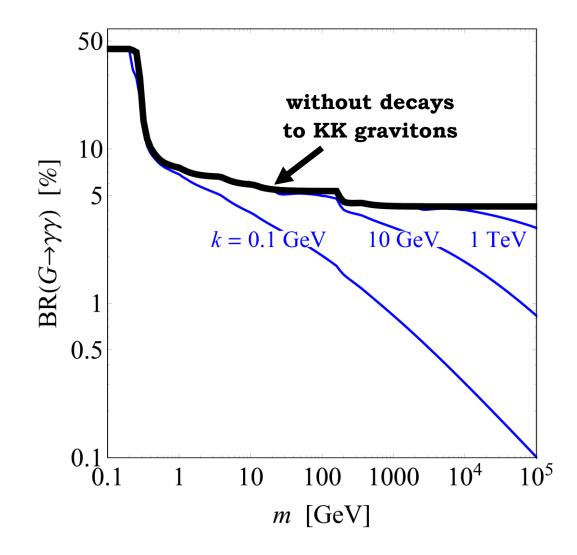
$$\Gamma_{n \to \text{SM}} \simeq \frac{283}{960\pi^2} \frac{m_n^3}{RM_5^3}$$

Decays to pairs of lighter KK gravitons

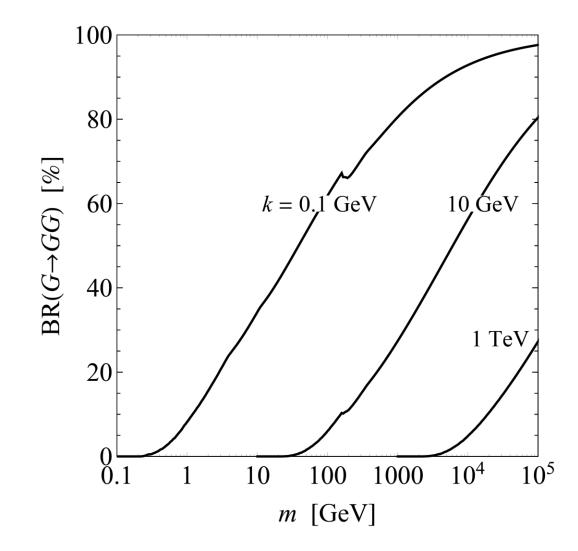
For
$$n \gg kR \gg 1$$
:
 $\Gamma_{n \to KK} \simeq \frac{5 \cdot 7 \cdot 17}{3 \cdot 2^{14} \pi^2} \frac{\sqrt{km_n} m_n^3}{kRM_5^3} \longrightarrow \frac{\Gamma_{n \to KK}}{\Gamma_{n \to SM}} \approx 0.04 \sqrt{\frac{m_n}{k}}$

A very large effect for low k.

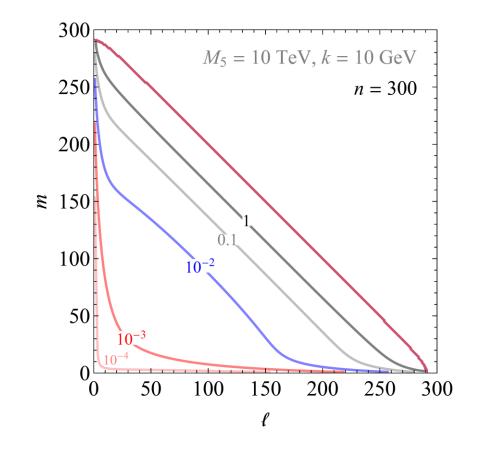
Effect on the diphoton branching fraction



Branching fraction of the KK cascades



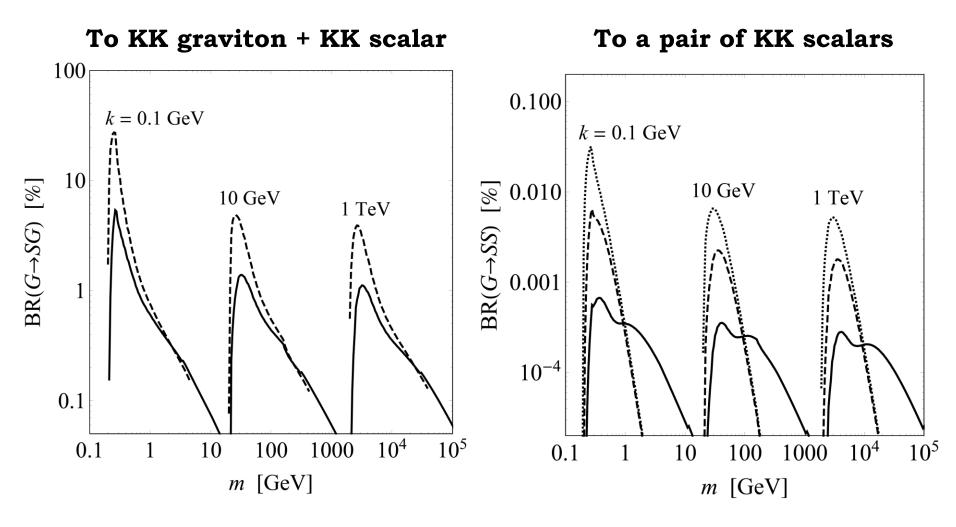
Preferred phase space region for the cascade decay products



Mode *n* decays primarily to modes ℓ and *m* satisfying $n \approx \ell + m$.

Potential for multi-step cascades.

Can also decay to KK scalars.



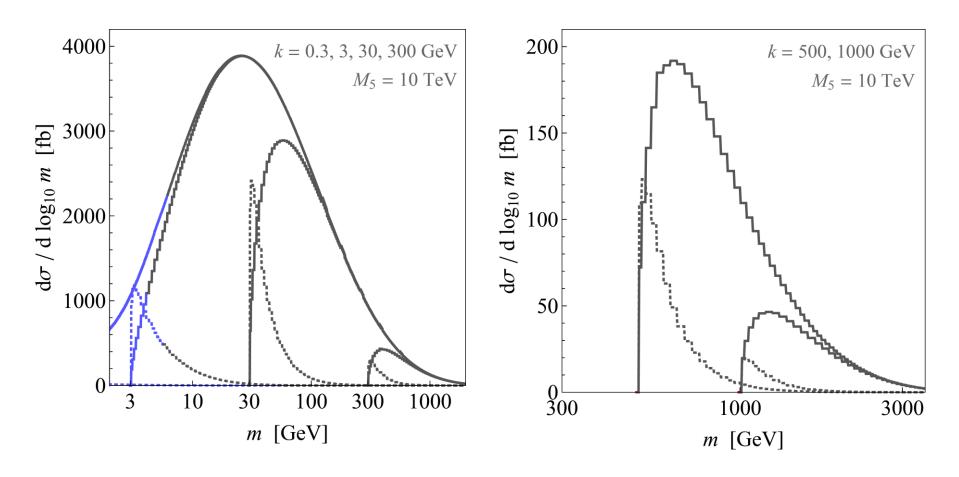
of scalar zero modes in the final state: 0 (solid), 1 (dashed), 2 (dotted)

Production cross sections and lifetimes

KK graviton and KK scalar (\times 500, dashed)

prompt displaced detector-stable

 $\sqrt{s} = 13 \text{ TeV}$

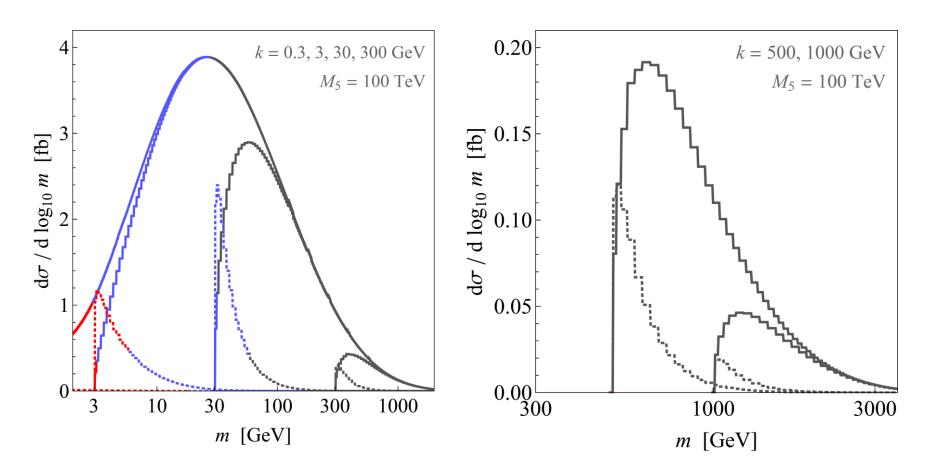


Production cross sections and lifetimes

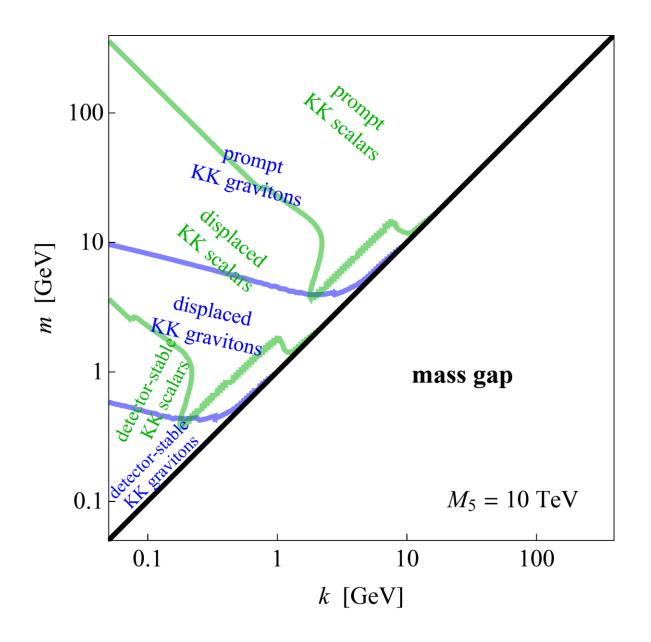
KK graviton and KK scalar (\times 500, dashed)

prompt displaced detector-stable

 $\sqrt{s} = 13 \text{ TeV}$



Lifetimes

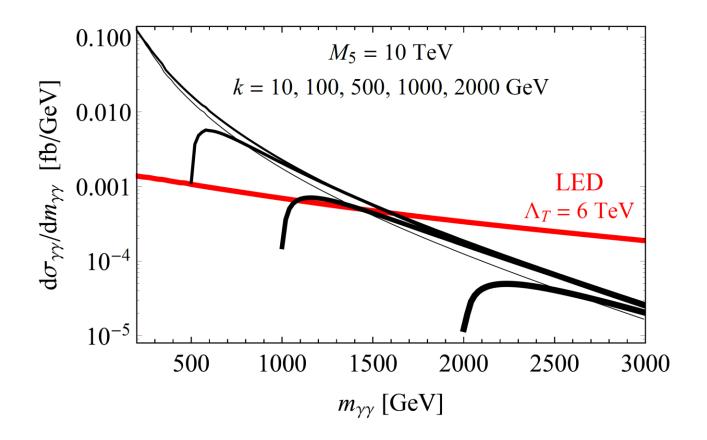


Standard signatures

> Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass.

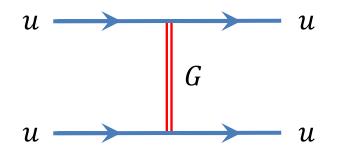
Standard signatures

Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the LED benchmark models.



Standard signatures

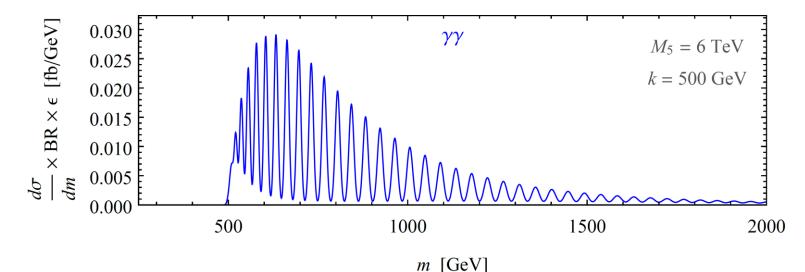
- > Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the LED benchmark models.
- Effect on rate and angular distribution in dijets (important contributions due to *t*-channel exchange).



Standard signatures

- Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the LED benchmark models.
- Effect on rate and angular distribution in dijets (important contributions due to *t*-channel exchange).
- > Distinct $\gamma\gamma$ and e^+e^- resonances at the beginning of the spectrum.

However, how are resonance searches affected by nearby peaks?



Standard signatures

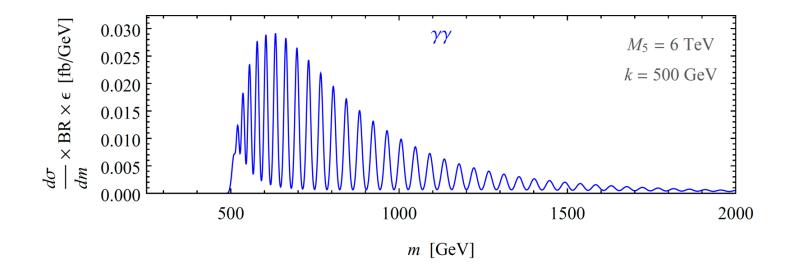
- > Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the LED benchmark models.
- Effect on rate and angular distribution in dijets (important contributions due to *t*-channel exchange).
- ► Distinct $\gamma\gamma$ and e^+e^- resonances at the beginning of the spectrum.

However, how are resonance searches affected by nearby peaks?

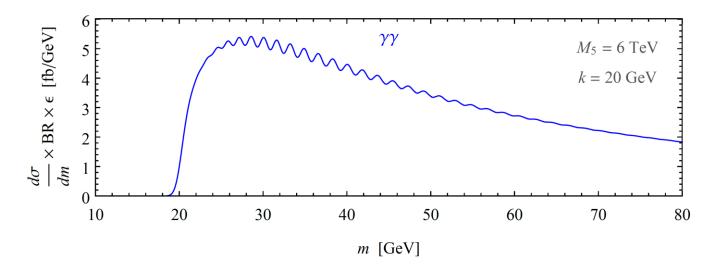
Strong gravity signatures (black holes etc.) around m ~ M₅. As in other scenarios, unknown and model dependent.

Novel signatures

> Periodic peaks in $\gamma\gamma$ and e^+e^- spectra, i.e. a peak in **Fourier space**.

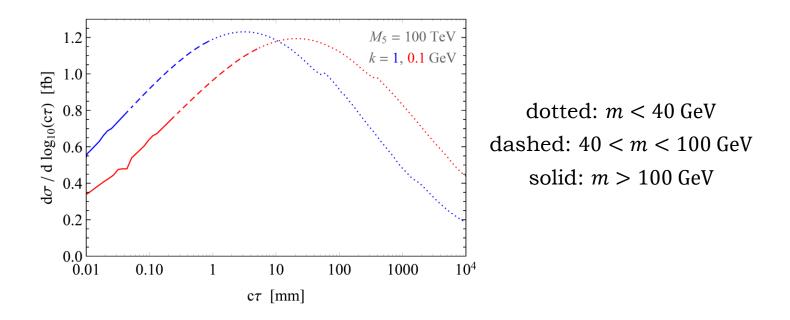


- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in Fourier space.
- > **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, at a low mass.

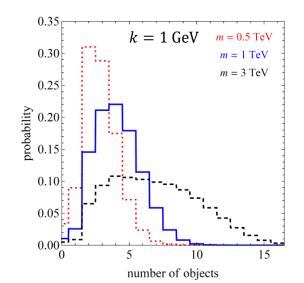


Requires triggering on ISR, or doing data scouting / trigger-level analysis.

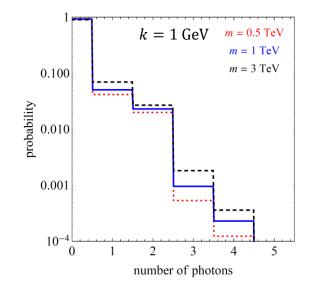
- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in Fourier space.
- > **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, at a low mass.
- Resonant production of somewhat long-lived (although not very boosted) light KK gravitons.



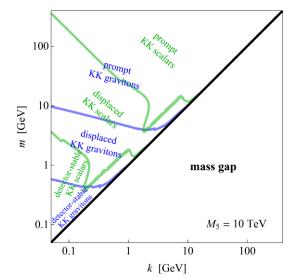
- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in Fourier space.
- > **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, at a low mass.
- Resonant production of somewhat long-lived (although not very boosted) light KK gravitons.
- Cascades within the KK graviton and KK scalar towers.
 - High object multiplicity.

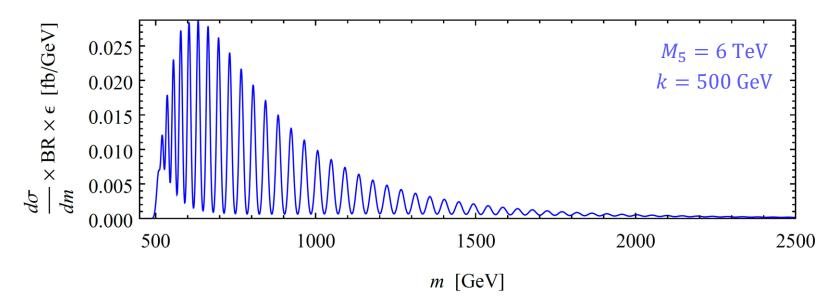


- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in Fourier space.
- > **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, at a low mass.
- Resonant production of somewhat long-lived (although not very boosted) light KK gravitons.
- Cascades within the KK graviton and KK scalar towers.
 - High object multiplicity.
 - High multiplicity of special objects, such as leptons, photons, *b* jets.



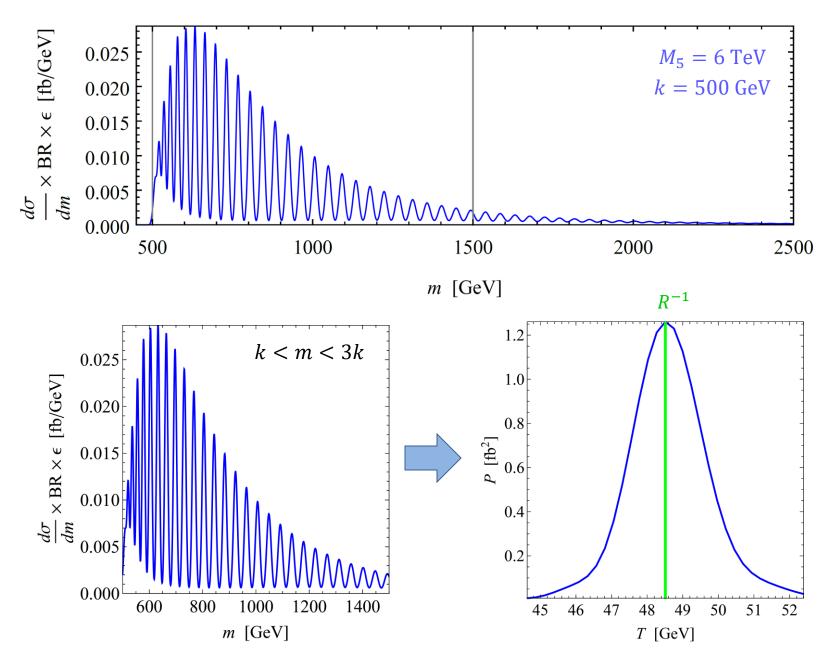
- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in Fourier space.
- > **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, at a low mass.
- Resonant production of somewhat long-lived (although not very boosted) light KK gravitons.
- Cascades within the KK graviton and KK scalar towers.
 - High object multiplicity.
 - High multiplicity of special objects, such as leptons, photons, *b* jets.
 - Displaced objects along with prompt objects.

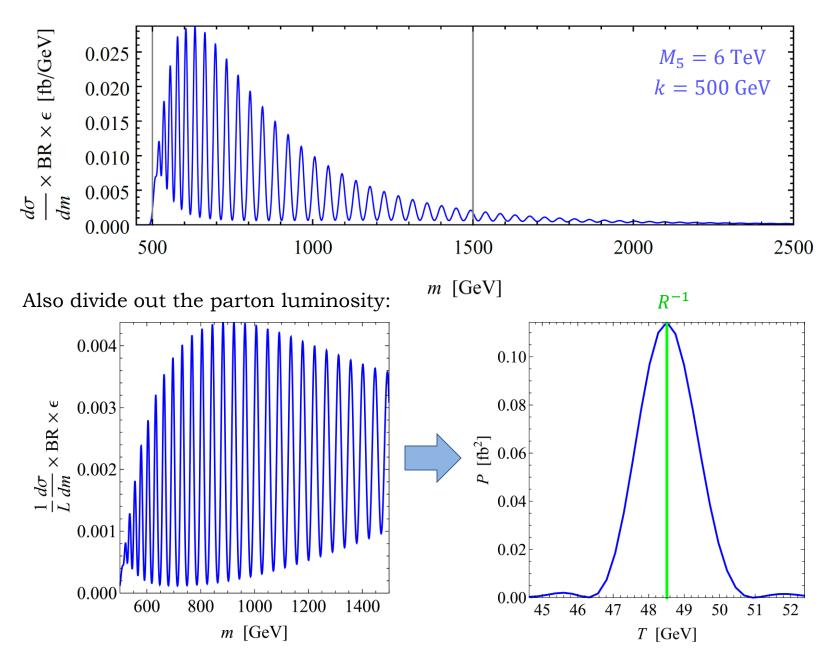




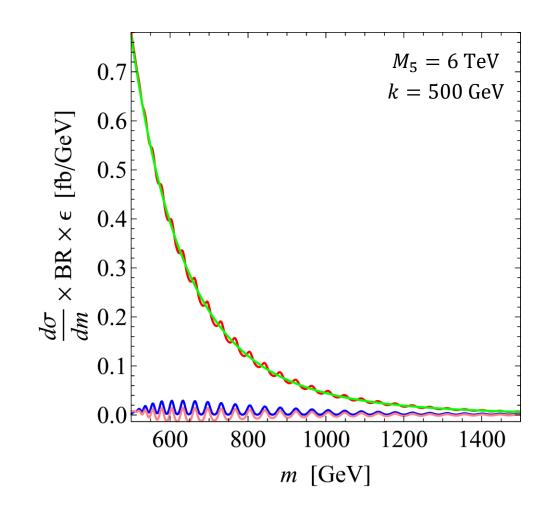
Is it possible to detect the periodic structure by analyzing the $\gamma\gamma$ spectrum in Fourier space?

$$P(T) \equiv \left| \frac{1}{\sqrt{2\pi}} \int_{m_{\min}}^{m_{\max}} dm \frac{d\sigma}{dm} \exp\left(i \frac{2\pi\sqrt{m^2 - k^2}}{T}\right) \right|^2$$

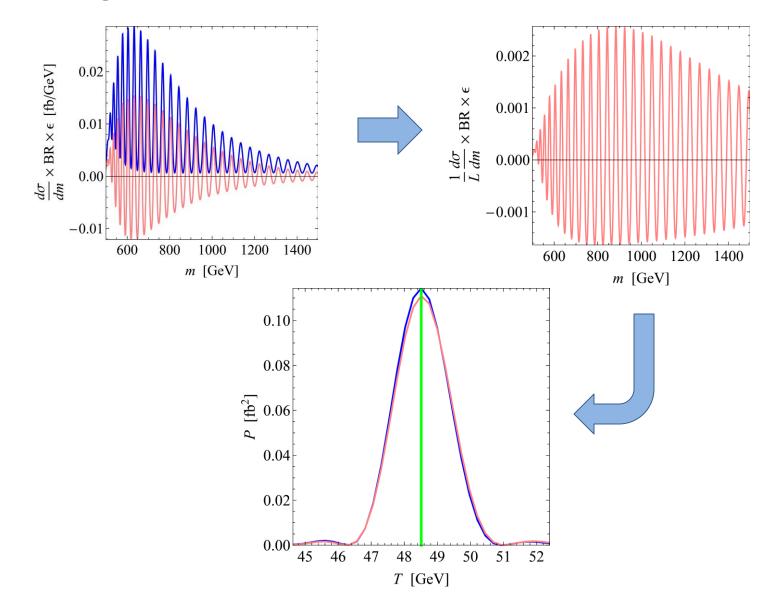




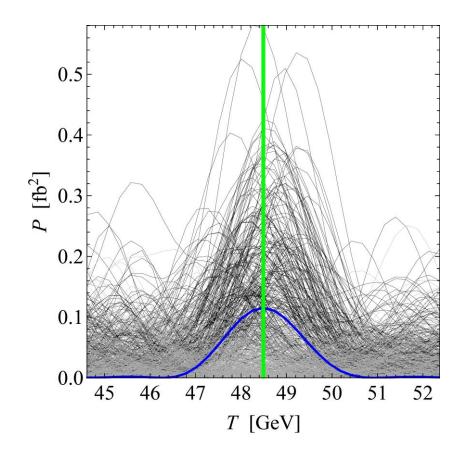
Adding background and subtracting a fit to a smooth function.



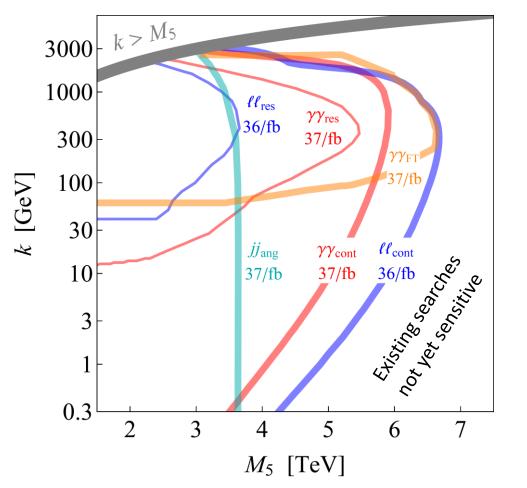
Dividing out the parton luminosity and Fourier transforming.



Generating multiple realizations of signal+background (black) and background alone (gray) to quantify significance.



Sensitivity of some of the channels



- Reasonably natural regions of parameter space are still allowed.
- Limits on M₅ from continuum searches weaken at low k
 because KK tower cascades dilute the SM BRs.
- Fourier transform is competitive with the other methods.
- Benchmark models for high-multiplicity final states, displaced decays, low-mass resonances / turn-on.

Summary

- > The Clockwork is a tool for generating hierarchies.
- In the context of the electroweak-Planck hierarchy, it suggests a theory with a graviton and dilaton propagating in an extra dimension, with a linear background profile for the dilaton.
- The bulk must be supersymmetric, while SUSY breaking on the SM brane does not ruin the setup.
- Novel LHC signatures
 - * Effects on high-mass $\gamma\gamma$ and $\ell^+\ell^-$ spectra quite different from LED benchmark models.
 - * Motivation for searches in Fourier space.
 - * Motivation for low-mass resonance / turn-on searches.
 - * Benchmark models for high-multiplicity final states.
 - * Benchmark models for displaced decays.

Thank You!

Supplementary Slides

Production cross sections

Single KK graviton:

$$\sigma_n = \frac{\pi}{48\Lambda_n^2} \left(3\mathcal{L}_{gg}(m_n^2) + 4\sum_q \mathcal{L}_{q\bar{q}}(m_n^2) \right)$$

KK graviton tower approximated by a continuum:

$$\frac{d\sigma}{dm} \simeq \frac{\pi}{48M_5^3} \sqrt{1 - \frac{k^2}{m^2}} \left(3\mathcal{L}_{gg}(m^2) + 4\sum_q \mathcal{L}_{q\bar{q}}(m^2) \right)$$

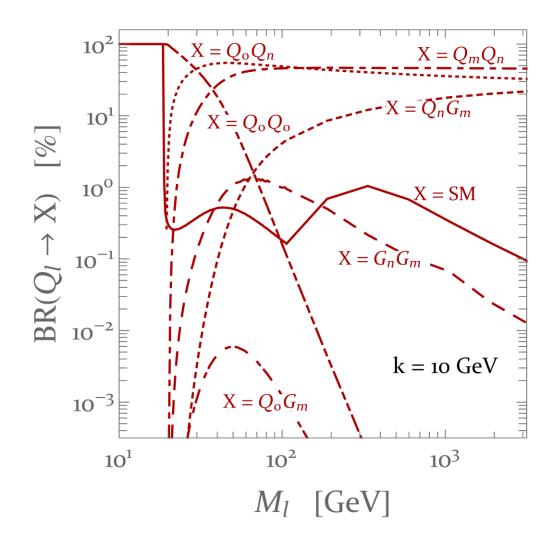
Independent of k for $m \gg k$.

KK scalar tower:

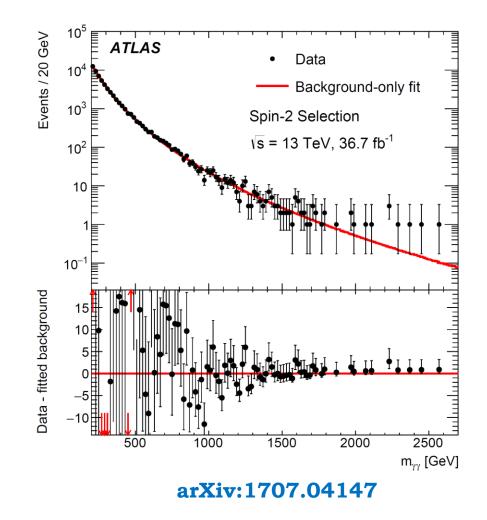
$$\frac{d\sigma}{dm} \simeq \frac{49\alpha_s^2}{864\pi^2 M_5^3} \sqrt{1 - \frac{k^2}{m^2}} \left(1 - \frac{8}{9}\frac{k^2}{m^2}\right)^{-1} \frac{k^2}{m^2} \mathcal{L}_{gg}(m^2)$$

KK scalar decays

Except for the few lowest modes, KK cascades typically dominate over the SM decays of the KK scalars.

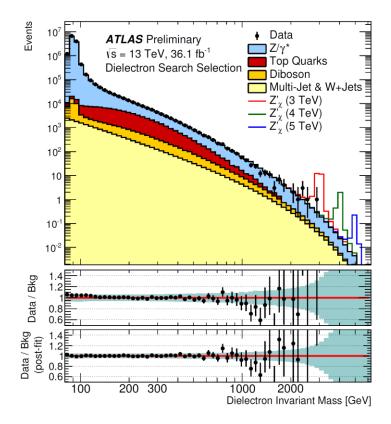


Searches in high-mass $\gamma\gamma$ continuum



Unfortunately, uses just a single search region, $m_{\gamma\gamma} > 2240$ GeV. Optimized for LED, suboptimal for CW/LD.

Searches in high-mass $\ell^+\ell^-$ continuum



m_{ee} [GeV]	80-120	120-250	250-400	400-500	500-700
Drell-Yan Top Quarks Dibosons Multi-jet & W+jets Total SM	$\begin{array}{r} 11800000 \pm 700000\\ 28600 \pm 1800\\ 31400 \pm 3300\\ 11000 \pm 9000\\ \end{array}$	$216000 \pm 11000 44600 \pm 2900 7000 \pm 700 5600 \pm 2000 273000 \pm 12000 $	17230 ± 1000 8300 ± 600 1300 ± 140 780 ± 80 27600 ± 1100	$2640 \pm 180 1130 \pm 80 228 \pm 25 151 \pm 21 4150 \pm 200$	1620 ± 120 560 ± 40 146 ± 16 113 ± 17 2440 ± 130
Data	12415434	275711	27538	4140	2390
Z'_{χ} (4 TeV) Z'_{χ} (5 TeV)	$\begin{array}{c} 0.00635 \pm 0.00021 \\ 0.00305 \pm 0.00012 \end{array}$	$\begin{array}{c} 0.0390 \pm 0.0015 \\ 0.0165 \pm 0.0006 \end{array}$	$\begin{array}{c} 0.0564 \pm 0.0025 \\ 0.0225 \pm 0.0010 \end{array}$	$\begin{array}{c} 0.0334 \pm 0.0027 \\ 0.0139 \pm 0.0007 \end{array}$	$\begin{array}{c} 0.064 \pm 0.004 \\ 0.0275 \pm 0.0015 \end{array}$
m_{ee} [GeV]	700–900	900-1200	1200-1800	1800-3000	3000-6000
Drell-Yan Top Quarks Dibosons	421 ± 34 94 ± 8 39 ± 4	176 ± 17 27.9 ± 2.8 16.9 ± 2.1	62 ± 7 5.1 ± 0.7 5.8 ± 0.8	8.7 ± 1.3 < 0.001 0.74 ± 0.11	0.34 ± 0.07 < 0.001 0.028 ± 0.004
Multi-jet & W+jets	39 ± 6	16.1 ± 2.0	7.9 ± 2.3	1.6 ± 1.2	0.08 ± 0.27
				1.6 ± 1.2 11.0 ± 1.8	0.08 ± 0.27 0.45 ± 0.28
Multi-jet & W+jets	39 ± 6	16.1 ± 2.0	7.9 ± 2.3		

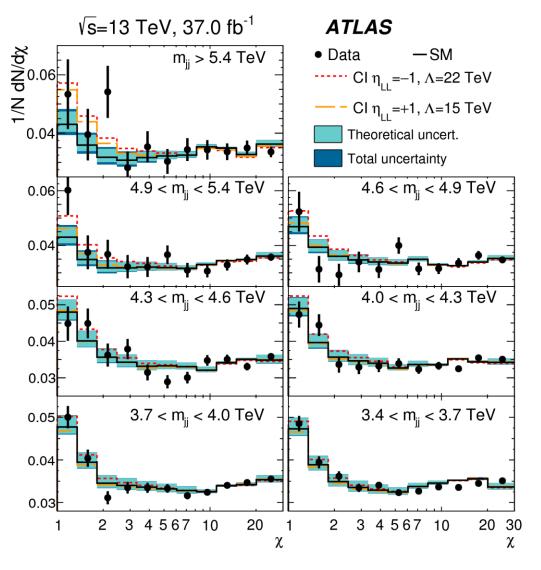
... and analogously for muons.

ATLAS-CONF-2017-027

Searches in dijet angular distributions

Searches look at angular distributions in m_{jj} bins, using the variable

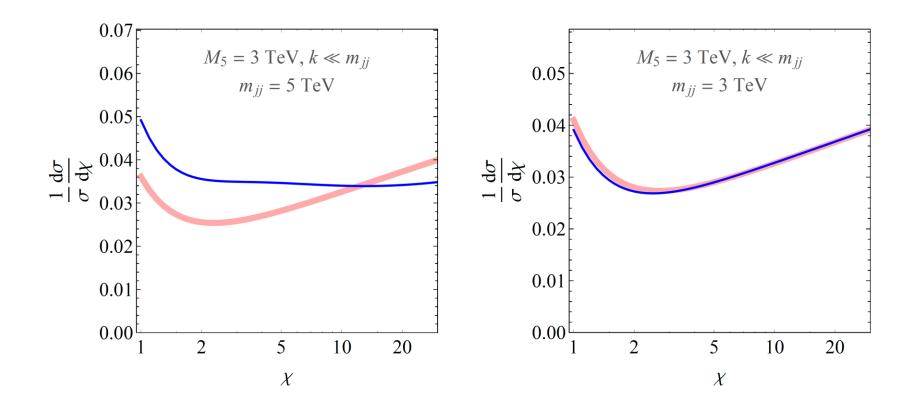
$$\chi = \exp(|y_1 - y_2|)$$



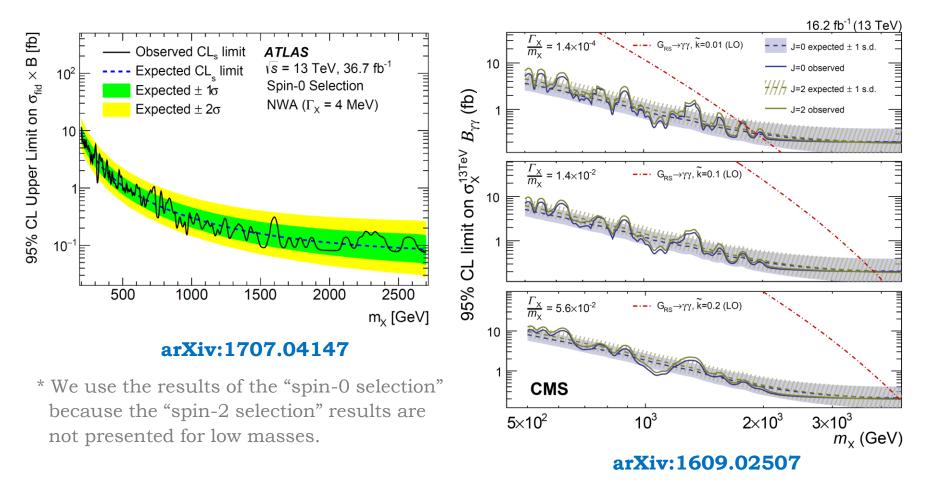
arXiv:1703.09127

Searches in dijet angular distributions

Unfortunately, limits can only be set by relying on masses > M_5 (where the validity of the theory is questionable), so the interpretation in terms of the model parameters is uncertain.

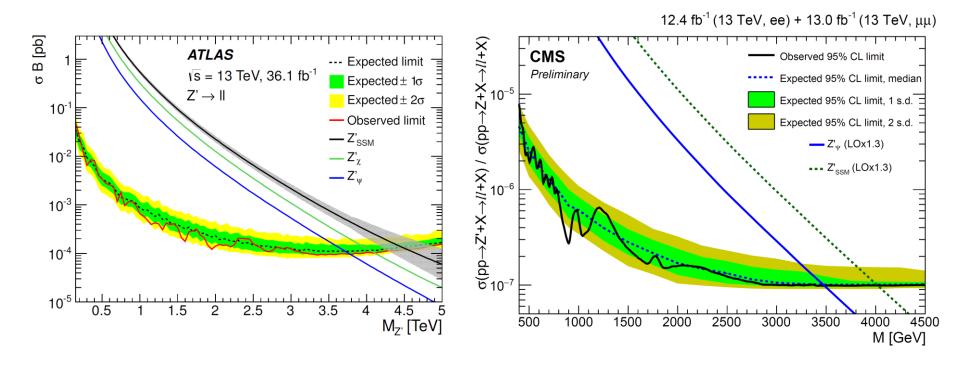


$\gamma\gamma$ resonance searches



- **Caveats:** 1. We use a single (best) signal peak for limit setting.
 - 2. Intrinsic background due to the rest of the KK tower is not taken into account.
 - 3. In practice, nearby peaks might confuse the "bump hunter".

$\ell^+\ell^-$ resonance searches



arXiv:1707.02424

CMS-PAS-EXO-16-031

Caveats: 1. We use a single (best) signal peak for limit setting.

- 2. Intrinsic background due to the rest of the KK tower is not taken into account.
- 3. In practice, nearby peaks might confuse the "bump hunter".