A warped Pati-Salam model for the *B* decay anomalies MB & A. Crivellin – arXiv:1801.xxxx

Monika Blanke

ZPW 2018 - Flavours: light, heavy, and dark Zürich – January 15, 2018

B decay anomalies from the BSM perspective

B decay measurements

- 4.1σ deviation in $b \rightarrow c\tau\nu$ decays
- $\sim 5\sigma$ anomaly in $b \rightarrow s\mu^+\mu^-$ transitions

Implications for BSM physics

- new particles at the TeV scale
- new source of lepton flavour universality violation
- yet need to comply with stringent constraints from
 - direct LHC searches
 - Higgs and electroweak precision constraints
 - flavour observables like B_s mixing, $b \rightarrow s \nu \bar{\nu}$ etc.

The Pati-Salam vector leptoquark

Prime BSM candidate for simultaneous explanation: $SU(2)_L$ singlet vector leptoquark with LH couplings to fermions

- > no tree level contributions to $B_s \bar{B}_s$ mixing and $b \rightarrow s \nu \bar{\nu}$ transitions
- > purely left-handed coupling structure favoured by
 - global $b \to s \mu^+ \mu^-$ fits
 - total B_c lifetime
 - $B \rightarrow D \tau \nu$ differential rate

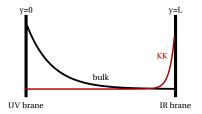
Towards UV-complete model

Vector leptoquark arising from Pati-Salam gauge group

 $SU(4) \times SU(2)_L \times SU(2)_R$

has the right gauge quantum numbers!

Challenge: flavour non-universal couplings to fermions


Pati-Salam in the Randall-Sundrum background

Idea:

embed Pati-Salam model into the 5D Randall-Sundrum space-time

$$ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2 \qquad 0 \le y \le L$$

- extra space-time coordinate yconfined to interval $0 \le y \le L$, and warped by e^{-2ky} factor
- 4D Kaluza-Klein (KK) decomposition
 - towers of massive KK modes localized near IR brane
 - massless zero modes depending on boundary conditions
 - \succ identified with SM particles

Gauge symmetry breaking pattern

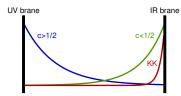
Two step symmetry breaking pattern

Pati-Salam gauge symmetry in the 5D bulk, broken by boundary conditions on the UV brane

 $SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y$

 SM Higgs confined to the UV brane induces EW symmetry breaking $SU(2)_L \times U(1)_Y \to U(1)_{\rm em}$

- Higgs decoupled from KK modes at IR brane
- stringent EW precision constraints are evaded
- Yukawa couplings need to respect SM gauge symmetry only
- but: usual RS solution to gauge and flavour hierarchy problems lost


Fermion sector

• fermions as 5D bulk fields in complete PS representations

$$\begin{pmatrix} u_L^1 \ u_L^2 \ u_L^3 \ \nu_L \\ d_L^1 \ d_L^2 \ d_L^3 \ \ell_L \end{pmatrix} \sim (4, 2, 1) \qquad \begin{pmatrix} u_R^1 \ u_R^2 \ u_R^3 \ \nu_R \\ d_R^1 \ d_R^2 \ d_R^3 \ \ell_R \end{pmatrix} \sim (4, 1, 2)$$

massless zero modes correspond to SM fermions

 zero mode localization along extra dimension y depends exponentially on 5D bulk mass parameter c = m_{5D}/k
 ➤ non-universal couplings to KK modes

B anomalies require

- hierarchical localization of LH fermions: $c_{L1} > c_{L2} > c_{L3}$
- RH fermions localized at UV brane

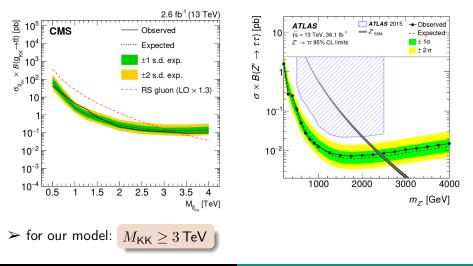
The 4D composite dual

AdS/CFT correspondence: dual 4D composite model

- elementary sector with SM gauge group
- elementary Higgs field
- conposite sector with Pati-Salam global symmetry
- left-handed fermions partially composite linear mixing of SM fermions with composite resonances: $0 \sim s_1 \ll s_2 \ll s_3 \sim 1/\sqrt{2}$
- right-handed fermions (mostly) elementary

The 4D composite dual

AdS/CFT correspondence: dual 4D composite model


- elementary sector with SM gauge group
- elementary Higgs field
- conposite sector with Pati-Salam global symmetry
- left-handed fermions partially composite linear mixing of SM fermions with composite resonances: $0 \sim s_1 \ll s_2 \ll s_3 \sim 1/\sqrt{2}$
- right-handed fermions (mostly) elementary

Simplified model: keep only SM fields + lowest-lying KK modes

- common mass scale $M_{\rm KK}$ for all new particles
- massive vector resonances for entire PS gauge group
- massive vectorlike fermions that mix with SM fermions

LHC constraints

strongest constraints from searches for $t\bar{t}$ and $\tau\bar{\tau}$ resonances

Flavour alignment

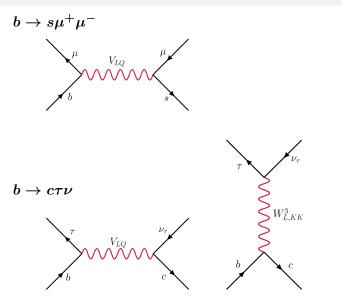
- \bullet generically, KK modes of gluons, B-L gauge boson and W_L^3 mediate tree level FCNCs
 - \succ reintroduces problematic contributions to meson mixings and $b \to s \nu \bar{\nu}$
- avoided by imposing flavour alignment between elementary-composite mixiing (=5D bulk masses) and Y_d

no tree level FCNCs in the down sector

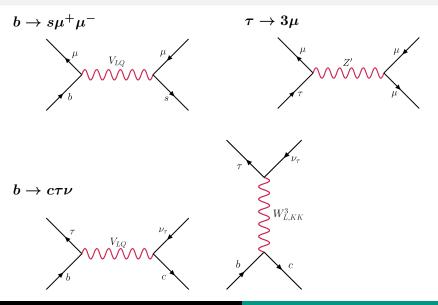
 \succ tree level contribution to $D^0-\bar{D}^0$ mixing sufficiently small

• resulting leptoquark coupling matrix

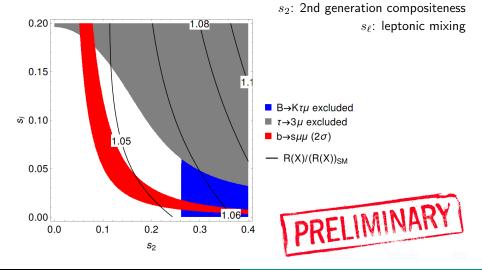
$$\Gamma_{d_i\ell_j}^{LQ,L} = \frac{ig_s^*}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0\\ 0 & s_2^2 c_\ell & s_2^2 s_\ell\\ 0 & -s_3^2 s_\ell & s_3^2 c_\ell \end{pmatrix}_{ij}$$


 $u_i \nu_j$ includes additional CKM rotation

Important tree level effects


 $b
ightarrow s \mu^+ \mu^-$

 μ μ V_{LQ}


Important tree level effects

Important tree level effects

Can we resolve the *B* decay anomalies?

Conclusions

- Pati-Salam model in the Randall-Sundrum background provides UV-complete model for $SU(2)_L$ singlet vector leptoquark
- dangerous FCNC contributions from neutral KK gauge bosons evaded by down quark flavour alignment

full resolution of $b \to s\mu^+\mu^-$ anomaly and simultaneous significant enhancement of R(D) and $R(D^*)$, without relevant fine-tuning in other flavour observables