Explanation of the 17 MeV Atomki anomaly

in a $U(1)$-extended 2HDM

Luigi Delle Rose

Rutherford Appleton Laboratory and University of Southampton

RHUL, 01 November 2017

Based on LDR, S. Khalil, S. Moretti, arXiv:1704.03436
Observation of Anomalous Internal Pair Creation in ^8Be: A Possible Indication of a Light, Neutral Boson

*Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

T. J. Ketel

Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay

CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

(Received 7 April 2015; published 26 January 2016)

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV ($J^\pi = 1^+, T = 1$) state → ground state ($J^\pi = 0^+, T = 0$) and the isoscalar magnetic dipole 18.15 MeV ($J^\pi = 1^+, T = 0$) state → ground state transitions in ^8Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of $> 5\sigma$. This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of $16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst})$ MeV/c2 and $J^\pi = 1^+$ was created.
The Atomki experiment

Luigi Delle Rose, RAL and UoS

RHUL, 01 November 2017
The Atomki experiment

The Atomki pair spectrometer experiment was set up for searching e^+e^- internal pair creation in the decay of excited ^8Be nuclei, the latter being produced with help of a beam of protons directed on a ^7Li target. The proton beam was tuned in such a way that the different ^8Be excitations could be separated with high accuracy.
8Be decay modes

- Hadronic decay (BR ~ 1)
 \[^8\text{Be}^* \rightarrow ^7\text{Li} + p \]

- Electromagnetic decay (BR $\sim 1.5 \times 10^{-5}$)
 \[^8\text{Be}^* \rightarrow ^8\text{Be} + \gamma \]

- Internal pair creation (BR $\sim 5.5 \times 10^{-8}$)
 \[^8\text{Be}^* \rightarrow ^8\text{Be} + \gamma^* \rightarrow ^8\text{Be} + e^+ e^- \]
$^8\text{Be anomaly}$

\[M_X = 16.7 \pm 0.35 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ MeV} \]

\[\frac{\text{BR}(^8\text{Be}^* \rightarrow X + ^8\text{Be})}{\text{BR}(^8\text{Be}^* \rightarrow \gamma + ^8\text{Be})} \times \text{BR}(X \rightarrow e^+ e^-) = 5.8 \times 10^{-6} \]

\text{Statistical significance of the excess of about 6.8 } \sigma
Signal characteristics and consistency checks

- Both the opening angle and invariant mass distributions present the characteristics of an excess consistent with an intermediate boson
- The signal appears as a bump over the monotonically decreasing background from QED
- The bump disappears off resonance
- The bump appears only for symmetric energies of e⁺e⁻ (as expected from an on-shell non-relativistic particle)

![Graph showing angular correlations for different energies](image)

\(^7\text{Li}(p,e^+e^-)^8\text{Be} \)
- a): \(E_p = 1.20 \text{ MeV} \)
- b): \(E_p = 1.10 \text{ MeV} \)
- c): \(E_p = 1.04 \text{ MeV} \)
- d): \(E_p = 0.80 \text{ MeV} \)
Possible explanations of the 8Be anomaly

1. The $X \to e^+ e^-$ decay implies that X is a boson

2. Candidates:

 a) **Scalars** ($J^P = 0^+$)

 not allowed since $1^+ \to 0^+ 0^+$ would imply $L = 1$ and $(-1)^L$

 b) **Pseudoscalars** ($J^P = 0^-$)

 decay width $\sim |k|^3/m_X^3$ implies new Yukawa couplings $Y \sim 0.3 \ Y_{SM}$

 c) **Vectors** ($J^P = 1^-$)

 decay width $\sim |k|^3/m_X^3$ implies $g' \sim 10^{-3}$

 d) **Axial-vectors** ($J^P = 1^+$)

 nuclear matrix elements have been computed only recently (arXiv:1612.01525)

 decay width $\sim |k|/m_X$ implies $g' \sim 10^{-4}$

 e) **Vector + Axial-vector spin-1 bosons**

 strongly constrained by atomic parity violation
The spin - 1 case

We consider a *generic* abelian extension of the SM described by the abelian group U(1)’

\[J^\mu_{Z'} = \sum_f \bar{\psi}_f \gamma^\mu \left(C_{f,V} + \gamma^5 C_{f,A} \right) \psi_f \]
Experimental constraints on the lepton couplings

- The \(Z' \) decays into \(e^+e^- \) inside the Atomki detector: \(c\tau \lesssim 1 \text{cm} \)

- Electron beam dump experiment (SLAC E141)

- Parity-violating Moller scattering (SLAC E158)

- Magnetic moments of electron and muon

- Electron-positron colliders, like KLOE2 searching for \(e^+e^- \rightarrow \gamma Z', Z' \rightarrow e^+e^- \)

- Neutrino-electron scattering
Experimental constraints on the quark couplings

- Neutral pion decay (NA48/2), $\pi^0 \to Z'\gamma, Z' \to e^+e^-$
- Atomic parity violation in Cesium
- Rare η decay, $\eta \to \mu^+\mu^-$
- Search for $\phi \to Z'\eta, Z' \to e^+e^-$ at KLOE2
- Charged kaon decay (NA48/2), $K^+ \to Z'\pi^+, Z' \to e^+e^-$
- Neutron–neutron scattering
- Proton fixed target experiments
Neutral pion decay (NA48/2), $\pi^0 \to Z'\gamma, Z' \to e^+e^-$

The process is proportional to the anomaly factor

$$N_\pi \equiv (C_{u,V} q_u - C_{d,V} q_d)^2$$

$$= \frac{1}{9} (2C_{u,V} + C_{d,V})^2$$

there is no contribution from the axial couplings up to chiral-symmetry breaking effects proportional to the quark masses

$$|2C_{u,V} + C_{d,V}| \lesssim \frac{0.36 \times 10^{-3}}{\sqrt{\text{BR}(Z' \to e^+e^-)}}$$
Experimental constraints on the quark couplings

Atomic parity violation in Cesium

- It provides an accurate test of the low-energy electroweak sector of the SM
- It also confirmed the low-energy running of the electroweak coupling constants

Very strong constraints on a light Z' can be extracted from the measurement of the effective weak charge of the Cs atom

$$\Delta Q_W = -\frac{2\sqrt{2}}{G_F} C_{e,A} [C_{u,V}(2Z + N) + C_{d,V}(Z + 2N)] \frac{K(M_{Z'})}{M_{Z'}^2}$$

where $|\Delta Q_W| \lesssim 0.71$ at 2σ

$K(M_{Z'})$ is a correction factor taking into account the Yukawa-like potential generated by the exchange of a massive boson between the nucleus and the atomic electrons

$K(M_{Z'}) \approx 0.8$ for $M_{Z'} \approx 17$ MeV

arXiv:0902.0335
arXiv:1203.2947
Model Building
We consider a generic abelian extension of the SM described by the abelian group U(1)’. Due to the presence of the abelian groups U(1)_γ x U(1)’ the most general kinetic Lagrangian of the corresponding abelian fields is

$$\mathcal{L}_{\text{kin}} = -\frac{1}{4} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} - \frac{1}{4} \hat{F}'_{\mu\nu} \hat{F}'^{\mu\nu} - \frac{\kappa}{2} \hat{F}'_{\mu\nu} \hat{F}^{\mu\nu}$$

It is particularly convenient to recast the kinetic Lagrangian into a diagonal form by a transformation (rotation + rescaling) of the fields. This affects the structure of the gauge covariant derivative

$$\mathcal{D}_\mu = \partial_\mu + \ldots + i g_1 Y B_\mu + i (\tilde{g} Y + g' z) B'_\mu$$

Two gauge couplings \(\tilde{g}, g'\) for the new abelian field
The EW symmetry breaking and the Z' mass

Consider the simplest extension: *an additional U(1)' with the same Higgs potential*

The neutral gauge boson mass matrix can be extracted from the Higgs Lagrangian

\[-\mathcal{L}_{\text{Higgs}} = \frac{v^2}{8} (g_2 W^3_\mu - g_1 B_\mu - \tilde{g}_H B'_\mu)^2 + \frac{m_{B'}^2}{2} B'^2_\mu + \ldots\]

where \(\tilde{g}_H = \tilde{g} + 2z_H g' \) induces a Z-Z' mixing:

\[
\begin{pmatrix}
B^\mu \\
W_3^\mu \\
B'^\mu
\end{pmatrix} = \begin{pmatrix}
\cos \theta_w & -\sin \theta_w \cos \theta' & \sin \theta_w \sin \theta' \\
\sin \theta_w & \cos \theta_w \cos \theta' & -\cos \theta_w \sin \theta' \\
0 & \sin \theta' & \cos \theta'
\end{pmatrix} \begin{pmatrix}
A^\mu \\
Z^\mu \\
Z'^\mu
\end{pmatrix}
\]

\[
\tan 2\theta' = \frac{2\tilde{g}_H g_Z}{\tilde{g}_H^2 + 4m_{B'}^2/v^2 - g_Z^2}
\]

for \(g', \tilde{g} \ll 1 \quad m_{B'}^2 \ll v^2 \) one obtains

\[
M_Z^2 \simeq \frac{1}{4} g_Z^2 v^2, \quad M_{Z'}^2 \simeq m_{B'}^2
\]

if we assume that \(m_B \) is generated through SSB by the vev \(v' \) of an extra scalar we find\(v' \sim 10 \text{ GeV} \) with \(g' \sim 10^{-3} \)
The Z' interactions

The interactions between the Z' gauge boson and the SM fermions are described by the gauge current

$$J_{Z'}^\mu = \sum_f \bar{\psi}_f \gamma^\mu (C_{f,L} P_L + C_{f,R} P_R) \psi_f$$

where the Left- and Right-handed coefficients are

$$C_{f,L} = -g_Z s' (T^3_f - s_w^2 Q_f) + \bar{g}_{f,L} c'$$
$$C_{f,R} = g_Z s_w^2 s' Q_f + \bar{g}_{f,R} c'$$

with

$$\bar{g}_{f,L/R} = \bar{g} Y_{f,L/R} + g' z_{f,L/R}$$

in the limit $\bar{g}, g' \ll 1$

$$C_{f,V} \simeq \bar{g} c_w^2 Q_f + g' \left[z_\Phi (T^3_f - 2 s_w^2 Q_f) + z_{f,V} \right] ,$$
$$C_{f,A} \simeq g' \left[-z_\Phi T^3_f + z_{f,A} \right] ,$$
The Z' interactions

The interactions between the Z' gauge boson and the SM fermions are described by the gauge current

$$J_{Z'}^\mu = \sum \bar{\psi}_f \gamma^\mu (C_{f,L} P_L + C_{f,R} P_R) \psi_f$$

where the Left- and Right-handed coefficients are

$$C_{f,L} = -g_Z s' (T^3_f - s^2_w Q_f) + \bar{g}_{f,L} c'$$
$$C_{f,R} = g_Z s^2_w s' Q_f + \bar{g}_{f,R} c'$$

with

$$\bar{g}_{f,L/R} = \bar{g} Y_{f,L/R} + g' z_{f,L/R}$$

in the limit $\bar{g}, g' \ll 1$

- **Dark photon**
- **Dark Z**
- **Z' interactions**
Theoretical constraints

We build on top of the SM

1. Gauge invariance
2. Anomaly-free model
3. Flavour universality
4. Minimal matter content (*compatibly with 1 and 2*)

In particular, the gauge invariance of the SM Yukawa Lagrangian

\[-\mathcal{L}^{\text{SM}}_{\text{Yuk}} = \bar{Q} L Y_u \tilde{H} u_R + \bar{Q} L Y_d H d_R + \bar{L} Y_e H e_R + \text{h.c.}\]

implies

\[z_\Phi \equiv z_H = z_Q - z_d = -z_Q + z_u = z_L - z_e\]

and therefore

\[C_{f,A} \simeq g' \left[-z_\Phi T_f^3 + z_{f,A} \right] = 0\]
Theoretical constraints

To summarise: we can identify two situations discriminated by the scalar content of the model

1. The SM is extended by an additional abelian gauge group $U(1)'$ and the SM scalar sector is unchanged

 The Z' has only vector interactions with the SM fermions
 (the only exception is the left-handed neutrino coupling to a V-A current)

2. The SM is extended by an additional abelian gauge group $U(1)'$ and the scalar sector is extended (for instance by an additional Higgs doublet)

 The Z' has both vector and axial-vector interactions with the SM fermions
Z’ with vector interactions only – dark photon

The first attempt: dark photon
a vector portal between the SM and a
hidden sector interacting with
the SM e.m. charged fields
through kinetic mixing $-\frac{\varepsilon}{2} F'_{\mu\nu} F^{\mu\nu}$

$\varepsilon' = 0 \quad (\varepsilon_n = 0, \quad \varepsilon_p = \tilde{\varepsilon} = 0.011)$

$\text{NA48/2} \quad \pi^0 \rightarrow Z' \gamma$

$N_\pi \equiv (\varepsilon_u q_u - \varepsilon_d q_d)^2$

$= \frac{1}{9} (2\varepsilon_u + \varepsilon_d)^2 = \frac{\varepsilon_p^2}{9}$

the Z’ must be protophobic:
it couples to neutron but not to protons

only one free parameter $\tilde{\varepsilon}$

arXiv:1508.01307
Z’ with vector interactions only – general case

To summarise:

\[
|\varepsilon_n| = (2 - 10) \times 10^{-3} \\
|\varepsilon_p| \lesssim 1.2 \times 10^{-3} \\
|\varepsilon_e| = (0.2 - 1.4) \times 10^{-3} \\
\sqrt{|\varepsilon_e \varepsilon_\nu|} \lesssim 3 \times 10^{-4} .
\]

\textit{arXiv:1608.03591}

- \(\varepsilon_n\) is determined by the \(^8\text{Be}\) signal rate
- \(\varepsilon_p\) is bounded by NA48/2 experiment
- \(\varepsilon_e\) is bounded from below by beam dump experiments and from above by \((g-2)_e\) and KLOE2
- \(\varepsilon_\nu\varepsilon_e\) is bounded by neutrino-electron scattering experiment (TEXONO)

In a \textit{minimal} gauge invariant, anomaly free and flavour universal model with a single Higgs doublet we obtain: \(\varepsilon_\nu = \varepsilon_n\) and the last bound is incompatible with the others!!!
The EW symmetry breaking and the Z' mass in a 2HDM

Consider an additional $U(1)'$ with an extended Higgs potential (two Higgs doublets)

The neutral gauge boson mass matrix can be extracted from the Higgs Lagrangian

$$-\mathcal{L}_{\text{Higgs}} = \frac{v_1^2}{8} (g_2 W^3 - g_1 B - \bar{g}_\Phi B')^2$$

$$+ \frac{v_2^2}{8} (g_2 W'^3 - g_1 B - \bar{g}_\Phi B')^2 + \frac{m_{B'}^2}{2} B'^2 + \ldots$$

$$\tan 2\theta' = \frac{2\bar{g}_\Phi g_Z}{\overline{k}^2 + 4m_{B'}^2 / v^2 - g_Z^2}$$

$$\bar{g}_\Phi = \bar{g}_\Phi_1 \cos^2 \beta + \bar{g}_\Phi_2 \sin^2 \beta$$

$$\overline{k}^2 = \bar{g}_{\Phi_1}^2 \cos^2 \beta + \bar{g}_{\Phi_2}^2 \sin^2 \beta$$

$$\bar{g}_{\Phi_n} = \bar{g} + 2g' z_{\Phi_n}$$

for $g', \tilde{g} \ll 1 \quad m_{B'}^2 \ll v^2$

$$M_{Z'}^2 \approx m_{B'}^2 + \frac{v^2}{4} g'^2 (z_{\Phi_1} - z_{\Phi_2})^2 \sin^2 (2\beta)$$

Even if $m_{B'} = 0$, we can generate the 17 mass from EWSB (with $g' \sim 10^{-4}$) by the same EW mass scale $v = 246$ GeV, as for the Z and W bosons.
From the interaction Lagrangian described above one finds a new contribution to \((g-2)_\mu\). We now analyse the contribution of a very light gauge boson which has been measured at Brookhaven National Laboratory to a precision of 0.5 parts per million. The strongest bound comes from the atomic parity violation in Cesium (Cs), namely from the measurement of the electron anomalous magnetic moment \((g-2)_e\), with an uncertainty of the discrepancy between the SM prediction and the experimental measurement of 3 parts per million.

In the protophobic scenario, in which the neutrino coupling must be envisaged \([3]\), this bound is the coupling to neutrons, and a mechanism to suppress the rate since \(\Delta \rho = \rho_{\text{SM}} - \rho_{\text{exp}} = 54 \pm 8\) parts per million. The light-boson contribution to the anomalous magnetic moment is defined by the product of \(\frac{g}{\sin \beta} \approx 0.28\) (from EWSB) and \(\frac{\Delta m^2}{M^2}\) (from the Higgs framework) which can be compared with the experimental limit on the mass of the light gauge boson, \(m < 260\) MeV.

In the second doublet added with a type-I Yukawa configuration, the lightest gauge boson is in high tension with the measured anomaly in the decays of the Beryllium. Notably, the lightness of the former, has the potential to explain the smallness of the SM contribution, with the two intertwined as it is the pseudoscalar coupling to the \(Z\) boson.

The work of LDR and SM is supported in part by financial contributions from the STFC Consolidated Grant U1407961 and a Marie Curie International Outgoing Fellowship (Marie Sklodowska-Curie grant agreement No. 642466). The work of LDR has been supported in part by the STDF project 13858 and the European Union’s 7th Framework Programme and STFC/COFUND Rutherford International Fellowship scheme. SK was partially supported by the STFC/COFUND Rutherford International Fellowship scheme.
Future prospects

Experimental side

- Other experimental groups may independently verify the Atomki result
- Search for other nuclear transitions
- Other experiments searching for dark photons (LHCb search for $D^*(2007)^0 \rightarrow D^0 X$)

Theoretical side

- Improving the computation of the nuclear matrix elements of an axial current
- Classification of UV complete models explaining low-scale physics
Conclusions

• There is an anomaly in the IPC decay mode of an excited state of the Beryllium with a statistical significance of 6.8 σ

$$M_X = 16.7 \pm 0.35 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ MeV}$$

$$\frac{\text{BR}(^8\text{Be}^* \rightarrow X + ^8\text{Be})}{\text{BR}(^8\text{Be}^* \rightarrow \gamma + ^8\text{Be})} \times \text{BR}(X \rightarrow e^+e^-) = 5.8 \times 10^{-6}$$

• Build a UV complete model explaining the excess is quite challenging: many bounds from low-energy physics experiments (e.g. parity violations)

• The SM electroweak symmetry breaking may account for the mass of this light Z' boson without introducing any new mass scale
Backup slides
Experimental constraints on the lepton couplings

Electron beam dump experiment (SLAC E141)

We have not seen the Z' in these experiments

- the Z' has not been produced
 \[C_{e,V}^2 + C_{e,A}^2 < 10^{-17} \]
- the Z' has been caught in the dump
 \[\frac{C_{e,V}^2 + C_{e,A}^2}{\text{BR}(Z' \to e^+e^-)} \geq 3.7 \times 10^{-9} \]
Experimental constraints on the lepton couplings

Parity-violating Moller scattering (SLAC E158)

The new Z' boson contributes to the left-right asymmetry

$$A_{PV} \equiv \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

which can be used to constrain the vector and axial-vector couplings

$$|C_{e,V}C_{e,A}| \lesssim 10^{-8}$$
Experimental constraints on the lepton couplings

Magnetic moments of electron and muon

\[
\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -10.5 \pm 8.1 \times 10^{-13}
\]

\[
\Delta a_\mu = a_\mu^{\text{EXP}} - a_\mu^{\text{SM}} = 2.90 (90) \times 10^{-9}
\]

Contributions from a Z’:

\[
\delta a_l = \frac{C_{l,V}^2}{4\pi^2} \int_0^1 dx \frac{x^2(1-x)}{x^2 + (1-x)r_l^2} - \frac{C_{l,A}^2}{4\pi^2} \frac{1}{r_l^2} \int_0^1 dx \frac{2x^3 + (x - x^2)(4-x)r_l^2}{x^2 + (1-x)r_l^2}
\]

\[
r_l = M_{Z’}/m_l
\]

\[
\delta a_e = 7.6 \times 10^{-6} \ C_{e,V}^2 - 3.8 \times 10^{-5} \ C_{e,A}^2
\]

\[
\delta a_\mu = 0.009 \ C_{\mu,V}^2 - C_{\mu,A}^2
\]
Experimental constraints on the lepton couplings

Electron-positron colliders (KLOE2)

\[e^+ e^- \rightarrow \gamma Z', Z' \rightarrow e^+ e^- \]

\[(g - 2)_\mu \pm 2\sigma \] favored

\[(g - 2)_{\mu} \pm 5\sigma \]

\[(g - 2)^e \]

\[C_{e,V}^2 + C_{e,A}^2 \]

\[\text{BR}(Z' \rightarrow e^+ e^-) \lesssim 3.7 \times 10^{-7} \]
Experimental constraints on the lepton couplings

Neutrino-electron scattering

It implies a bound on the product of the electron and neutrino couplings to the Z'

arXiv:1502.07763

Luigi Delle Rose, RAL and UoS
The simplest solution: one Higgs doublet and a vector-like Z'

\[C_{f,V} \approx \tilde{g} c_w Q_f + g' z_f , \]
\[C_{f,A} \approx 0 . \]

The couplings are usually written as multiples of the positron charge \(e \) as

\[J_{Z'}^\mu = e \sum_f \left(\bar{\psi}_f \gamma^\mu \psi_f \right) \equiv \sum_f \varepsilon_f \bar{\psi}_f \gamma^\mu \psi_f \]

\[\varepsilon_n = \varepsilon_u + 2\varepsilon_d = \varepsilon' \]
\[\varepsilon_p = 2\varepsilon_u + \varepsilon_d = \varepsilon' + \tilde{\varepsilon} \]

The decay width of the excited state of \(^8\text{Be} \) is given by

\[\frac{\Gamma\left(^8\text{Be}^* \rightarrow ^8\text{Be} X\right)}{\Gamma\left(^8\text{Be}^* \rightarrow ^8\text{Be} \gamma\right)} = \frac{(\varepsilon_p + \varepsilon_n)^2 |k_X|^3}{|k_\gamma|^3} = (\varepsilon_p + \varepsilon_n)^2 \left[1 - \left(\frac{m_X}{18.15 \text{ MeV}} \right)^2 \right]^{3/2} \]

nuclear matrix elements cancel in the ratio

which implies \[|\varepsilon_p + \varepsilon_n| \approx 0.011 \quad \text{or} \quad |\varepsilon_u + \varepsilon_d| \approx 3.7 \times 10^{-3} \]

assuming \(BR(Z' \rightarrow e^+e^-) = 1 \)